

2556 | P a g e

Design a Fast Decoding Single Error Correction Codes for

a Subset of Critical Bits

Mohiya Tabassum
1
, K.Rajesh Kumar

2

1Pursuing M.Tech (DSCE) from Sri Visvesvaraya Institute of Technology & Science, Chowderpally,

Devarkadra, Mahabubnagar

2
Working as Assistant professor (ECE) from Sri Visvesvaraya Institute of Technology & Science,

Chowderpally, Devarkadra, Mahabubnagar

ABSTRACT

Single error correction (SEC) codes are regularly utilized to defend data stored in memories and registers. In

various applications, such as a some control bits, networking are added to the data to help their processing. For

example, flags to spot the start or the end of a packet are commonly utilized. As a result, it is significant to have

SEC codes that defend both the information and the related control bits. It is striking for these codes to produce

fast decoding of the control bits, as these are used to establish the processing of the information and are com-

monly on the critical timing path. In this paper, a technique to enlarge SEC codes to maintain some extra con-

trol bits is there. The obtained codes maintain fast decoding of the extra control bits and are consequently ap-

propriate for networking applications.

Keywords- Error correction codes, high-speed networking.

I. INTRODUCTION

Networking applications need high-speed processing of data and thus rely on complex integrated circuits. The

device through one port enter in routers and switches, packets normally, are developed, and are then driven to

individual or additional output ports. During this developing, information are accumulated and progressed dur-

ing the device.

Consistency is a major constraint for networking tool like as nucleus routers. As a result, the stored data must be

protected to identify and accurate faults. This is normally done exploiting error-correcting codes (ECCs). Single

error correction (SEC) codes that can accurate 1-bit faults are commonly used for memories and registers.

One crisis that happens when protecting the data in networking applications is that, to assist its processing, a

some control bits are included to each data block. For example, flags to stain the start of a packet (SOP), the end

of a packet (EOP), or an error (ERR) are generally used. These flags are used to establish the processing of the

data, and the related control logic is normally on the critical timing path. To access the control bits, if they are

defended with an ECC, they must first be decoded. This decoding includes delay and may limit the overall fre-

quency. One decision is to defend the data and the control bits as unusual data blocks exploiting divide ECCs.

Such as, let us imagine 128-bit data blocks with 3 control bits. Then, a SEC code can defend a data block using

8 parity check bits, and another SEC code can defend the 3 control bits using 3 parity check bits. This choice

gives independent decoding of information and control bits which decreases the delay but needs extra parity

2557 | P a g e

check bits. One more alternative is to utilize a single ECC to defend both the information and control bits. Pro-

tecting 128 + 3 bits needs simply 8 parity check bits, thus accumulating 3 bits evaluated to the utilize of split

ECCs. On the other hand, in this situation, the decoding of the control bits is extra difficult and sustains extra

delay.

Fig. 1. Typical packet data storage in a networking application

In this thesis, a technique to enlarge a SEC code to too defend a few extra control bits is recommended. In the

resulting codes, the control bits may be decoded utilizing a division of the parity check bits. This decreases the

decoding delay and makes them appropriate for networking applications. To calculate the technique, several

codes have been constructed and implemented. They are then compared with existing solutions in terms of de-

coding delay and area.

II. DATA PROTECTION IN NETWORKING APPLICATIONS

Modern networking equipment maintains data rates that range from 10 to 400 Gbit/s, and terabit rates are ex-

pected in the near future. The clock frequencies used in current ASICs are normally in the collection of 300

MHz to 1 GHz, and the clock frequencies in FPGAs are typically lower (under 400 MHz). To maintain these

large data rates, on-chip packet data buses are large with usual widths among 64 and 2048 bits.

Packet data must frequently be stored in RAMs, e.g., in FIFOs for adapting processing rates.When storing

packet data, it is necessary to delineate the packet boundaries. In the absolute easiest case, every segment on the

bus can be defined by an only EOP marker. The subsequently suitable section is then imagined to be the begin

of the pursuing packet. In practice, designers also use a SOP marker to explicitly stain the begin of packets.

There are too several cases in packet developing wherever a packet is in error and it must be dropped. To mark

such erroredpackets, an additional control signal (ERR) may be required.

As mentioned in the introduction, from a fault protection view, it is striking to accumulate the information and

the indicators in a distinct large memory, as illustated in Fig. 1. Like this, fairly little ECC bits are needed. The

trouble with this approach is when the information are examine out. Normally, the indicators supply into a state

machine that manages the reading of the following data. For instance, the state machine can require to examine

out a single packet (up to an EOP), or it can require to examine out a fixed number of bytes of data (e.g., deficit

round robin scheduler). The critical timing path then consists of the ECC correction logic, followed by the state

machine logic, as illustarated in red. With a traditionalHamming SEC code, as the data bus increases in width,

the amount of layers of logic needed to decode the pattern and operate correction also enhances. Circuit design-

ers normally view significant timing on the signal trails transmitted to the correction of the indicators which

2558 | P a g e

give downstream state machines. For this motivation, special ECC codes which can present a fast decode of the

less number of indicator bits are very smart.

In various cases, it is sufficient for the structure to compact with the packet data with a granularity of the ob-

struct size. This prospective the case, for example, while the data are simply being transferred from one place to

another. On the other hand, in extra cases, it is significant to identify the packet data size a byte resolution. It

can be the case while the bit rate is essential (scheduling and policing) or when highest transfer unit length

checks are performed. The simple SOP and EOP indicators are not enough to know the exact packet with size;

thus, it may be necessary to store additional marker bits called EOPSIZE, which indicate how many of the bytes

in the EOP transfer are valid. Note that it is always assumed that all transfers prior to the EOP are complete. As

a result, on a 128-bit data bus, extra 4 bits of EOPSIZE can be needed, passing the total number of indicator bits

to 7 (SOP, EOP, ERR, and EOPSIZE[3:0]).

Fig. 2. Parity check matrix for a minimum-weight SEC code that protects 128 data bits

Fig. 3. Parity check matrix for a minimum-weight SEC code

that protects 128 data and 3 control bits

Fig. 4. Decoding of a control bit for single and independentSEC codes for data and control. (a) SEC code

for both data and control bits. (b) Independent SEC codes for data and control bits

Fig. 5. Proposed parity check matrix for a SEC code that protects 128 data and 3 control bits

2559 | P a g e

III. PROPOSED METHOD TO DESIGN THE CODES

As explained in the introduction, the objective is to propose SEC codes that can defend a data block in addition

some control bits such that the control bits can be decoded with less delay. As declared earlier, the data blocks

to be defended have a range that is normally a power of two, e.g., 64 or 128 bits. To defend a 64-bit data ob-

struct with a SEC code, 7 parity check bits are needed, while 8 are enough to protect 128 bits. In the primary

case, there are 2
7
 = 128 possible syndromes, and therefore, the SEC code may be extended to cover a few other

control bits. The similar is right for 128 bits and, in common, for a SEC code that defends a data obstruct that is

a power of two. It indicates that the control bits can also be defended with no extra parity check bits. It is more

efficient than using two separate SEC codes (one for the data bits and the other for the control bits) as this needs

extra parity check bits. The major difficulty in using an enlarged SEC code is that the decoding of the control

bits is extra difficult. To demonstrate this problem, let us think a 128-bit data obstruct and 3 control bits. The

first SEC code for the 128-bit data obstruct has the parity check matrix illustrated in Fig. 2. This code has a

parity check matrix with minimum total weight and balanced row weights to minimize encoding and decoding

delay. Three additional data columns can be easily added to find a code that protects the additional control bits.

For instance, the matrix in Fig. 3 can be used, in which three additional columns (marked as control bits) have

been added to the left.

The difficulty is that now, to decode the 3 control bits, we need to calculate the 8 parity check bits and compare

the results against the columns of the control bits. This is significantly more complex than the decoding of an

autonomous SEC code for the three control bits. The decoding of a bit in every case is represented in Fig. 4, and

the variation in intricacy is evident. As discussed former, our goal is to shorten the decoding of the control bits

while using a single SEC code for both data and control bits. To do so, the first step is to note that, in various

cases, SEC decoding can be simplified to check only some of the syndrome bits. One example is the decoding

of constant-weight SEC codes proposed. In this case, only the syndrome bits that have a 1 in the column of the

parity check matrix require to be checked. This simplifies the decoding for all bits but, in the majority cases,

needs extra parity check bits. In this case, the major intention is to shorten the decoding of the control bits as

those are commonly on the critical path. To do so, the parity check bits would be divided in two groups: a first

group that is allocated by both data and control bits and a second that is used only for the data bits. Then, the

decoding of the control bits only needs the recomputation of the primary collection of parity check bits. This

scheme is better shown with an example. Let us think a 128-bit data obstruct and 3 control bits protected with 8

parity check bits. Those 8 bits are divided in a collection of 3 shared between data and control bits and a second

group of 5 that is used only for the data bits. To defend the control bits, the first three parity check bits would be

allocated different values for each control bit, and the remaining parity check bits are not utilized to defend the

control bits. The rest of the values are exploited to protect the data bits, and for each value, different values of

the remaining five parity check bits can be used. In this example, the first group has 3 bits that can take 8 val-

ues, and three of them are used for the columns that communicate to the control bits. This leaves 5 values that

would be exploited to defend the data bits. The second group of parity check bits has 5 bits that would be uti-

lized to code 32 values for all of the 5 values on the primary group. Therefore, a maximum of 5 × 32 = 160 data

bits would be protected. In fact, the digit is lower as the zero value on the primary group would not be combi-

nedwith a zero or a single one on the second group as the corresponding column would have weight of zero or

2560 | P a g e

one. In any case, 128 data bits would be simply protected. An example of the parity check matrix of a SEC code

derived using this method is illustated in Fig. 5. The three first columns communicate to the added control bits.

The two groups of parity check bits are too separated, and the first three rows are shared for data and control

bits, while the previous five only defend the data bits. It can be inspected that the control bits would be decoded

by simply recalculating the first three parity check bits. Moreover, the zero value on these three bits is also used

for some data bits. This indicates that those bits are not required to recompute the first three parity check bits.

Fig. 6. Bit decoding of a control bit in the proposed SEC code

Table 1 Minimum number of Pcd bits for 128 and 256 data bits

Fig. 7. Proposed parity check matrix for a SEC

code that protects 128 data and 7 control bits

The decoding of one of the control bits is illustrated in Fig. 6. It would be examined that the circuitry is signifi-

cantly simpler than that of a traditional SEC code (see left part of Fig. 4). This will be confirmed by the practic-

al results presented in the subsequently section.

The method would also be utilized to defend more than three control bits. In a general case, let us think that we

require to defend d data bits and c control bits using p parity check bits. Then, p is divided in two groups pcd and

pd. The primary group is shared between control and data bits, and the second is used only for the data bits. The

amount of data bits that can be defended with this scheme would be estimated as follows. The number of com-

binations of the primary group available to be exploited to defend the data bits is 2
Pcd

 − c. For each of those, up

to 2Pd values can be used, presenting a total of (2
Pcd

 − c) · 2
Pd

. However, for the zero value, the combinations of

the second group with weight zero or one cannot be used, so pd + 1 should be subtracted. Likewise, for the pcd

2561 | P a g e

values with weight one on the primary group, the zero value on the second group cannot be used as the resulting

column would have weight one. Therefore, pcd should also be subtracted, presenting a total of (2
Pcd

 − c) · 2
Pd

 −

(pd + 1) − pcd. It is the amount of data bits that would be defended in addition to the control bits. As the figure of

control bits increases, pcd must also be increased to be capable to defend the obstruct of data bits with the similar

amount of parity check bits. It is illustrated in Table 1 for 128 and 256 data bits. Enhancing pcd makes the de-

coding of control bits more complex; therefore, the minimum significance would be used.

For example, the parity check matrix to protect 128 data and 7 control bits is illustrated in Fig. 7. It can be ex-

amined that, in this situation, more bits are needed in the primary group, making the decoding of the control bits

a little extra difficult. On the other hand, the control bits would still be decoded utilizing only four syndrome

bits in place of the eight bits needed in a traditional SEC code. Finally, it should be noted that the proposed

scheme raises the miscorrection probability for control bits in case of double errors. This is due to the utilize of

only a division of bits for the decoding of the control bits.

IV. SYNTHESIS AND SIMULATION RESULTS

The proposed SEC decoder is designed with the XILINX ISE 14.5 simulation tool and implemented with

Verilog HDL. The RTL diagram and simulation results are displayed below.

Fig. 8: Top level schematic diagram

Fig. 9: Internal architectures of RTL diagram

2562 | P a g e

Fig. 10: Synthesis report

Fig. 11: Simulation result

V. CONCLUSION

In this thesis, we have proposed a scheme to construct SEC codes that can defend an obstruct of data and some

extra control bits has been presented. The obtained codes are designed to enable fast decoding of the control bits.

The derived codes have the similar amount of parity check bits as existing SEC codes and therefore do not re-

quire additional cost in terms of memory or registers. To evaluate the benefits of the proposed scheme, several

codes have been implemented and evaluated with minimum-weight SEC codes.

VI. FUTURE SCOPE

This scheme can be extended to support more control bits by utilizing single or two extra parity check bits. This

would provide a solution to achieve fast decoding without using two split codes for data and control bits.

REFERENCES

[1] P. Bosshart et al., ―Forwarding metamorphosis: Fast programmable match-action processing in hardware

for SDN,‖ in Proc. SIGCOMM, 2013, pp. 99–110.

[2] J. W. Lockwood et al., ―NetFPGA—An open platform for gigabit-rate network switching and routing,‖ in

Proc. IEEE Int. Conf. Microelectron. Syst. Educ., Jun. 2007, pp. 160–161.

[3] A. L. Silburt, A. Evans, I. Perryman, S.-J. Wen, and D. Alexandrescu, ―Design for soft error resiliency in

Internet core routers,‖ IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 3551–3555, Dec. 2009.

2563 | P a g e

[4] E. Fujiwara, Code Design for Dependable Systems: Theory and Practical Application. Hoboken, NJ,

USA:Wiley, 2006.

[5] C. L. Chen and M. Y. Hsiao, ―Error-correcting codes for semiconductor memory applications: A state-of-

the-art review,‖ IBM J. Res. Develop., vol. 28, no. 2, pp. 124–134, Mar. 1984.

[6] V. Gherman, S. Evain, N. Seymour, and Y. Bonhomme, ―Generalized parity-check matrices for SEC-DED

codes with fixed parity,‖ in Proc. IEEE On-Line Test. Symp., 2011, pp. 198–20.

[7] Ten Gigabit Ethernet Medium Access Controller, OpenCores. [Online]. Available:

http://opencores.org/project/ethmac

[8] P. Zabinski, B. Gilbert, and E. Daniel, ―Coming challenges with terabitper-second data communication,‖

IEEE Circuits Syst. Mag., vol. 13, no. 3, pp. 10–20, 3rd Quart. 2013.

[9] UltraScale Architecture Integrated Block for 100 G Ethernet v.14. LigCOREIP Product Guide. PG165, Xi-

linx, San Jose, CA, USA. Jan. 22, 2015.

[10] OpenSilicon Interlaken ASIC IP Core. [Online]. Available: www.opensilicon. com/open-silicon-

ips/interlaken-controller-ip/

AUTHOR DETAILS

MOHIYA TABASSUM, pursuing M.Tech (DSCE) from Sri Visvesvaraya Institute

Of Technology & Science, Chowderpally (Vill), Devarkadra (Mdl), Mahabubnagar

(Dist), TS, INDIA.

K. RAJESH KUMAR, working as Assistant professor (ECE) from Sri Visvesva-

raya Institute Of Technology & Science, Chowderpally (Vill), Devarkadra (Mdl),

Mahabubnagar (Dist), TS, INDIA.

http://www.opensilicon/

