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ABSTRACT

Nadler found a fixed point for the mapping defined on product of metric spaces which are uniformly
continuous and also contraction in the first variable. Tarafdar generalized the Banach contraction
principle on a complete Hausdorff uniform spaces. In this paper we generalize the result of Nadler
according to technique of Tarafdar in some contractive conditions of Rhoades. Here we discuss only
those conditions which involve a single mapping.
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I. INTRODUCTION

Definition: A topological space X is said to have fixed point property(f. p. p.) if every continuous function f:
X— X has a fixed point.

The problem of whether the f. p. p. is or is not necessary invariant under cartesian products is an old one (see [2]
and [3] for its history). The f. p. p. is preserved when the maps f: XxZ—XxZ have special contraction
properties. Nadler [5] main results are as follows:

1.1 Theorem

Let (X, d) be a metric space. Let A; : X — X be a function with at least one fixed point a; for each i =1,2,....... ,
and let Ay : X — X be a contraction mapping with fixed point a,. If the sequence {A} converges uniformly to
Ay, then the sequence {a;} converges to ao.

1.2 Theorem

Let (X, d) be a locally compact metric space. Let A; : X — X be a contraction mapping with fixed point a; for
each i =1,2,........, and let Ay : X — X be a contraction mapping with fixed point a,. If the sequence {Ai}
converges pointwise to Ay, then the sequence {a;} converges to ay.

1.3 Theorem

Let (X, d) be a complete metric space, Z a metric space which has the f. p. p. and f:XxZ—XXxZ be a contraction
in the first variable.

(a) If fis uniformly continuous, then f has a fixed point.

(b) If (X, d) is locally compact, f is continuous, then f has a fixed point.
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We extend the class of complete metric spaces X to the class of complete Hausdorff uniform spaces and the
class of metric spaces Z to the class of uniform spaces in which sequences are adequate.

I1. SOME DEFINITIONS FROM RHOADES [6]
Let (X, d) be a complete metric space and f:X — X be a mapping. For x X, let 0(x)={x, f(x), f 2(x), ...... } be
the orbit of x under f. Consider the following conditions on f and (X, d):

(1) (Dass and Gupta) — There exist numbers a, p>0, a+ B<1 and for each X, x» € X, X« €0 (x) such that

d(X., F(X))L+d(x, f(x))]

d(f(x), f(x))<a 1+d(x,X.)

+ Ad (X, X.)

(2)' (Jaggi and Dass) — There exist numbers a, >0, a+p<1 and for each x, X« € X, X #X», X+€0(X) such that

d(x, f(x))d(x., f(x.))
d(x, f(x.))+d(x., f(x))+d(x x.)

d(f(x), f(x.)) < + Ad(x x.)

(3)' (Gupta and Saxena)— There exist numbers a, b, ¢>0, a+b+c<1 and for each x,x=eX,x=e0(x) such that
all+d(x, f d(x., f(x)  bd(x, f()d(x., f (x.))

d(f(x), f(x.)) < 1+ d(x.x) d(x,x.)

+cd (X, X.)

(4)"  (Jaggi) — There exist numbers o, >0, a+ B<1 and for each X, x= € X, X #X+ X~€0 (X) such that

d(x, f(x))d(x., f(x.))
d(x, x.)

(5)' (Khan) — There exists a number k, 0 < k<1 and for each x, x« € X, X« €0 (x) such that

d(x, f(x))d(x, f(x.))+d(x., f(x.)).d(x., f(x))
d(x, f(x.))+d(x., f(x))

(6)I (\]ain and D|X|t) — There exist q; , Bi > O,(Il + 2(13 + 2(14 + B]_ + Bz + B3 + 2B5 < 1, op + Bl + B4 + ﬁ5 <1 and

d(f(x), f(x.) <a

+ £d (X, X.)

d(f(x), f(x.) <k

for each x, x~€ X, X #xx, X«€0 (X) such that

d(x, f0)d(x, f())  d(x fx)dx, f()  d(x, f)d(x., f(x.))
+a, +a,

d(x,x.) d(xx.) d(x,x.)
d(x, f(x)).d(x., f(x.
a, ( (d)()x i ) () + £, d (X, %)+ B,d(x, (X)) + Sd (X, f(x.))+ £,d (X f(x.))
+ fd(x., £(x))
(7)"  (Sharma and Bajaj) — There exist a number B, 0 < § < % and for each x, x-e X, X« €0 (x) such that

d(x, f(x)).d(x, f(x.))
d(x, f(x))+d(x, f(x.))

d(f(x), f(x.) <

d(f(x), f(x)<p
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5
(8) (Dass) — There exist numbers a;, §;>0 with o, +a, + a5 + Z p ; < 1 for each positive integer m, and
j=1

for each X, X« € X, X #X«, X~€0 (X) such that
d(x, f"(x)).d(x., f"(x.)) e d(x, f"(x)).d(x., f"(x))
d(x, x.) 2 d(f™(x), f™(x.))
a, S e P B + A 17 00)
+ Bd (X, £ (X)) + B,d(x, 7 (X)) + Bsd (., £7 (X))
(9)' (Pachpatte Thm.1) — There exists a number g, € (0,1), and for each X, X« € X, X #x«, X=€0 (X) such that

d(x, f(x)).d(x., f(x)) d(x f(x.))d(x., f(x)) d(x f(x)).d(x f(x.))
d(x,x.) ’ d(x,x.) ' 2d(x, x.)

d(F™(x), f"(x.)) < &

d(f(x), f(x.)) <q max{d(x, Xe),

(10)" ( Pachpatte Thm.2) — There exists a number g, € (0,1), and for each X, X=X, X #X«X=€0(x) such that

min{d(f(x), f(x.)),d(x, f(x),d(x., f(x.)), d(x, f(z)()).(d)((x;.f(x*))}_

. {d(x, f(x.))d(x., F(x)) d(x, f(x)).d(x, f(x.))

min :
d(x, x.) d(x, x.)

In what follows, X will denote a complete Hausdorff uniform space, Z a uniform space in which sequences

}s g,d (X, X)

are adequate and f:XxZ—>XxZ be a mapping. For a fixed zeZ, f,; X—X be a mapping which is defined as
f,(x)=m.f(x,z) for all xeX, where n; is the projection of XxZ on X along Z. (m), 1< m <10; will denote the

condition (m) in Rhoades [6] with the modification that constant or functions that appear in (m) depend on z.

2.1 Theorem

Let (X, u) be a complete Hausdorff uniform space, Z a uniform space in which sequences are adequate which
has the f. p. p. and let f: XxZ—XxZ be a mapping and u={p,, :o€1}.

(a) If f is uniformly continuous and f, (3) for all o I and all zeZ, then f has a fixed point.

(b) If X is locally compact, f is continuous and f, e(3) for all ac | and all zeZ, then f has a fixed point.

Proof: We prove (a) and (b) simultaneously:

Step I: {t,} isa p, - Cauchy sequence for each ol

We construct a sequence t, (z) = t, in X as follows:

For a fixed xq in X and forany z € Z, ty= Xq, t.=my f(t,.1, 2) =, (t,.1) = fzn (t);n=1

Let A"(u)={ p, -o€ 1} be the augmented associated family of pseudometrics for u on X,

Since f,e(3) . Let ae | be arbitrary. Then for x, X« X, x« €0(X), there exist a, b, ¢ > 0 with a + b+ ¢ < 1, we have
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pa (fz (X), fz (X*)) S a[1+ p(x (X’ fZ (X))]pa (X*’fz (X*)) + b'pa (X' fz (X)) p(x (X*’fz (X*)) + C-pu (X, X*)

1+pa(x’ X*) p(x(x’ X*)

Set x«=f,(X) in the above inequality to obtain

j.pm £,)

l1-a—-b

Now, set X = X, then we have

0. (F,09,£2(9) s(

p. (F, (x.).F; (x.)) < (ﬁ}m (X..,T, (X))

Repeating above substitute we obtain

p(F2(), £209) < (1_:_ b] Pu(x ,0)
Using induction, we get
p. (F7 09, £ (%) s(l_a_b] P F,(9)

Finally set x = X, we get

c
t.,t,.,)<hl).p (t,,t,), whereh = <1
P, (t, 1) P, (to, ty) (1—a—bj

Using triangle inequality we find, for m > n

pa(tn,tm)Spa(tn,tn+1)+pa(tn+1,tn+2)+....+pa(tm_1,tm)

<(h? +h2+1+....+hg'_l).pa(to,tl)

n m-n
_h3@A=hD"M)p, (tg.ty)
1-h,

n
_hpaltoty)
1-h,

Since hg —0 as n—oo, this inequality shows that {t,} is a Cauchy sequence (i.e. a Cauchy sequence in p -

topology). Since ae | is arbitrary, {t,} isa p - Cauchy sequence for each a<l.

Step 11: Fixed point of f, in X [7]

Let Sy = {t.: n > p} for all positive integer p and let B = {S,: p =1, 2....}be the filter basis. It is easy to see the
filter basis B is a Cauchy in the uniform space (X, u). To see this we first note that the family {H(a ,€): ael,
€>0} is a base for u. Now let Heu be an arbitrary entourage. Then there exists a vel and €>0 such that

H(v,e)c H. Since {t,} is a p,-Cauchy sequence in X, there exists a positive integer p such that p, (t,, t,,) <€ for
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m = p, n > p this implied that S, x S, c H(v, €).Thus given any He u we can find a S, € B such that S, x S, < H.
Hence B is a Cauchy filter in (X, u). Since (X, u) is complete and Hausdorff, the Cauchy filter B
={Sp}converges to a unique point p;e X in the 1, topology (uniform topology induced by uniformity u). Thus T,
lim S, = p;. Now since f, is p,, - continuous for each o<, it follows that f, is T, continuous. Hence f,(p;) = f,(z,
lim Sp) = 7 lim f, (Sp) =7, lim Sp.1= p1.Thus p; is a fixed point of f,. Here p, is unique fixed point of f, as if we
assume p, is another fixed point of f, such that p; # p,. Since (X, u) is a Hausdorff space and p; # p, there is an
index Be I such that pg(ps, p2)# 0. Since f, is a contraction on X, we have
Pp(P1 P2) = g (F(P1), T2 (p2)) < hy. Py (P2, P2)
Which is absurd as 0 < hg < 1 and pg (p1, p2) # 0. Hence p; is unique fixed point of f; .
Step 111: Fixed point of f in XxZ

Let F : Z —X be given by F(z) = p; the unique fixed point of f,. Now let zy € Z and let {z;} be a
sequence of points of Z which converges to z,. By the assumption of (a) for this theorem, the sequence {f,}
converges uniformly to f,, and hence, by Theorem 1.1, the sequence {F(z;)} converges to F(z,). Under the
assumption of (b) we may apply Theorem 1.2, to conclude that the sequence {F(z;)} converges to F(zy). Hence
in either case, this proves that F is continuous on Z. Next let G: Z — Z be the continuous mapping defined by
G(z) = m, f(F(2),2) for each z € Z, where m, is the projection of X x Z on Z along X. Since Z has the f.p.p. there
is a point pe Z Such that G (p) =p. Therefore p = G(p) = 7, f(F(p),p). It follows that (F(p), p) is a fixed point of f.
This completes the proof of the theorem.
We observe that condition (1), (4) are stronger than (3), therefore the above theorem 2.1 has two corollaries
corresponding to each of these two conditions.
2.2 Corollary
(@) If fis uniformly continuous on XxZ and if for each z € Z, there exist numbers o, > 0, a+ B < 1 and for each

X, X= € X, X« €0 (x) such that

P (X f, (X)L +p, (% T, (X)]

pa(f, (), T, (x.)) < L p. (% X.)

+Bp, (X X.)

Then f has a fixed point.

(b) If X is locally compact, f is continuous and for each z € Z, there exist numbers o, f > 0, a+ 3 < 1 such that
the inequality in (a) is satisfied, then f has a fixed point.

2.3 Corollary

(@) If fis uniformly continuous on XxZ and if for each z € Z, there exist numbers o, § 20, o+ < 1 and for each
X, X« € X, X« €0 (X) such that

Po (%, (¥).p, (X, f, (X.))]

Po (X X.)

pa(f, (), T, (x.)) < +Bp, (% X.)

Then f has a fixed point.

(b) If X is locally compact, f is continuous and for each z € Z, there exist numbers a, > 0, a+ § <1 such that
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the inequality in (a) is satisfied, then f has a fixed point.

2.4 Theorem: Let (X, u) be a complete Hausdorff uniform space, Z a uniform space in which sequences are
adequate which has the f. p. p. and let f:XxZ—XxZ be a mapping and u={p,, :a€ 1}

(a) If f is uniformly continuous such that for each zeZ, f, satisfies any one of the conditions (2)', (5), (6), (7)’,
(8), (9)'and (10), then f has a fixed point.

(b) If X is locally compact, f is continuous such that for each ze Z, f, satisfies any one of the conditions (2), (5)’,
(6), (7), (8), (9)and (10)’, then f has a fixed point.

Proof: We prove (a) and (b) simultaneously:

Step I: {t,} isa p - Cauchy sequence for each ael

We define a sequence t,(z)=t, in X as follows:

For a fixed X, in X and any zeZ,
fzo (Xo) =t 1, = fzn (Xo) = nlf (fznil(xo)’z);n >1
Let A"(u)={ p, -0 I} be the augmented associated family of pseudo-metrics for u on X,

If f is such that f,(2) and apply x-=f,(X) then we have

po (X F, (9)-p, (F, (%), 7 (X))

f,(9,f7(¥) <o
P00 00 =0 T 00) + 0, (.9, 260) +p, (X F, )

+B-p, (% F,(3)

<ap, (F, (9,52 (9) +B:p. (% T, (%)
or . (F, (9, T (x»<[ B ]p % F,00)

Let X = X« in above inequality we have

p. (F, (). f] (x. ))<( : jp (X, (x.))

Again set x» = f,(x), then we can obtain

0 (F200. T (x»<[ BG) 2. (41, ()

By the induction we can write above relation as

pa(f; (X),fz”+l(X))<( B(J Pa (% T, (%)

Finally set x = Xo, then we obtain

oottt <[ 1ttt W
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Here we note that if the function f: XxZ—>XxZ is such that f,e(5) then by using similar arguments, we get

Pultn tha) <K".p, (o, 1)) @
Similarly if f is such that f,e(6) then we can obtain, the condition

n
p(,(tn,tnﬂ)s(l_ﬁﬁ%fgj Pultorty) ®
Likewise if f is such that f,e(7) then we obtain
Paltnitna) <B P (o, 1) @
Now, if f is such that f,(9) then we can obtain
Paltnitn) <A7p, (L, t;) ()
If f is such that f,(10) then we can obtain
Patnitna) <02, (L, 1) ©)

Finally if the function f is such that f,(8)’, then to obtain a condition of the type above, we proceed as follows:

Defineg, =f,", then we have

P, (%, gl(X))-d(X*,gl(X*))Jra P, (X 9;(¥).d(X.,g, (X))
P, (X X.) 2 pa(9,09,9,(%4))

Pu(9:(¥, 9, (x.)) <oy

P (X 91 (X+)).p, (X, 9, (X,))
P.(9:(¥, 9,(x.))
Using symmetry in above equation (7), we have

o (0. (0,0,00) < o PO LON DR G 9 (XD 6, () ol 9, (x.)
P, (X, %) P, (9:(X.),9;(X)

3 +B1pg (% X)) +B,p, (% 9:(X)
()

P (X,9:(%)-p, (X 9:(X)
P, (9:(%+),9,(X)

+B1p, (X X) +B,p, (X4, 9 (X))

®)
(7) and (8) above, we get

3

Adding equation g o (% 6, 09) +Bap. (X, 95 (9) +Bap, (% 9, (X))

P, (% 9:(¥)-p, (X-,9,(X.))
Py (Xxy %)

P, (9,09, 9,(X.)) < vy

iy, [Po (X 91 (¥). Py (X, 9: (X)) + P, (X G, (X ))py (X+, G5 (X))]

P, (9: (¥, 9, (x.)) + 7P, (X X4)

where,

+74lP, (% 9:(9) +p, (X, s X))+ v5 [P, (% 91 (X)) +p (X4, 9, (X)]
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5
with v, + 2y, +y, + 2y, +2y. =a, +0, + 0, +2Bi <1
=1 ©)]

In equation (9), we apply similar procedure described above for equation (1) with g, referred as f, then we have

+ + + "
pa(tn ' tn+l) < ( YZ YS YA YS j 'pa(tO’tl) (10)
1=91 =Y, =Y4—7Ys

According to conditions (2), (5), (6), (7), (9), (10)and (8) we obtain equations (1), (2), (3), (4), (5), (6) and

(10) respectively. In each of these cases if the concern constant replaced by ha then by step-1 of theorem 2.1 we

see that {t,} is a p-Cauchy sequence in X. However by the completeness of X, there is a point p; in X such

that t,—p;. We can easily see that p; is a unique fixed point of f,. By the help of steps-II, Ill of the above

theorem 2.1, we can conclude the theorem 2.4.

I11. CONCLUSION

We observe that condition (1), (4) are stronger than (3) and condition (4)  is stronger than conditions (6) and
(8) therefore the Theorem 2.1 has two corollaries corresponding to each of these two conditions (1), (4) and
Theorem 2.4 has one corollary corresponding to (4) which is already mentioned as a corollary to the Theorem
2.1. This paper is extension of Nadler [5] as well as Gupta [8] according to some contractive conditions of

Rhoades [6] which involve a single mapping.
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