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ABSTRACT 

Paper presents a Neural Network Modeling approach to microwave LNA design. To acknowledge the 

specifications of the amplifier, Mobile Satellite Systems are analyzed. Scattering parameters of the LNA in the 

frequency range 0.5 to 18 GHz are calculated using a Multilayer Perceptron Artificial Neural Network model 

and corresponding Smith charts and Polar charts are plotted as output to the model. This paper describes the 

design and measurement of a medium power amplifier (MPA) using 0.15µm GaAs PHEMT technology for 

wireless application. At 2.4 GHz and 3.0 V of VDS, a fabricated MPA exhibits a P1dB of 15.20 dBm, PAE of 

12.70% and gain of 9.70 dB. The maximum current, Imax is 84.40mA and the power consumption for this device 

is 253.20mW. The die size of this amplifier is 1.2mm x 0.7mm. 

 

I. INTRODUCTION 

In this research, attention is paid to the modeling of the scattering (S–) parameters of a gallium nitride high 

electron mobility transistor (GaN HEMT) power amplifier for Cband satellites [1]. The S-parameters of a 

microwave transistor depend on the operating bias condition as well as on the frequency. Modeling of the S-

parameters is based on application of artificial neural networks (ANNs). In the last two decades artificial neural 

networks have found their place as an efficient tool for modeling of microwave devices [2, 3]. ANN models are 

usually extracted from the measured data directly, without need for detailed knowledge about device physics, 

allowing them to encounter all effects contributing to the device behavior. ANN model is developed to obtain 

the microwave characteristics of the device which is further used to develop the ANN model for S-parameter 

extraction of pseudo orphic HEMT (High Electron Mobility Transistor). The calculated S-parameters, Gain and 

minimum Noise figure from the  

ANN model are the parameters which are used to design the low noise pHEMT (Pseudo High Electron Mobility 

Transistor) power amplifier.  

 

Figure 1: Generalized 2-port network 

MICROWAVE TRANSISTOR SPARAMETER 

Microwave transistors operating under small signal conditions can be characterized by the scattering parameters 

(S-parameters) which relate the voltage wave’s incident on the ports to those reflected from the ports (Fig. 1). 

The scattering matrix, or S matrix, is defined in relation to these incident and reflected voltage waves as: 
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Sii is the reflection coefficient seen looking into the port i when all other ports are terminated in load matches. S ij 

is the transmission coefficient from port j to port i when all ports are terminated in matched loads. The S-

parameters of microwave transistors are frequency, temperature and bias dependent [4]. 

 

II. Artificial Neural Networks method for Designing Low Noise Amplifier (LNA) 

Neural networks are the processing systems having information with their design inspired by the ability of the 

human brain. These networks learn from interpretations and generalize by abstraction. A usual neural network 

arrangement consists of two kinds of simple components. One is processing elements and the other is 

interconnections between them. The processing elements are called as neurons and the connection among these 

processing elements are known as links or synapses [1]. For the last two decades ANNs are utilized repeatedly 

in speech, pattern recognition, signal processing and remote sensing etc. [6]. Figure 1 shows the architecture of 

multilayer perceptron (MLP). MLP is a popularly used neural network structure in modeling of devices. In the 

MLP neural network, these neurons are collected into layers [8]. This architecture associates several inputs and 

predicts outputs. As there are numerous layers in this architecture so this architecture is called multilayer 

perceptron. The hidden layer has so many hidden neurons. For the training of ANN, the number of hidden nodes 

in an ANN should be optimized so that network is trained perfectly. ANN models are usually extracted from the 

measured data directly. Without need for detailed knowledge about device physics, these models permit them to 

encounter all effects contributing to the device 

 

Figure 2: Neural network architecture 

behaviour. ANN model is developed to acquire the microwave features of the device which is further utilized to 

cultivate the ANN model for scattering parameter extraction of pseudomorphic HEMT (High Electron Mobility 

Transistor).Minimization of NF and maximization of maximum available gain (MAG) generally possess 

opposite necessities. Minimum NF is obtained when the input impedance of LNA is made equivalent to the 
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characteristics impedance calculated at operating frequency. On contrary to this, MAG is obtained when input 

and output terminations are perfectly matched in characteristic impedance Zo. Generally these two complex 

impedances are never equal so an optimization scheme needs to be addressed. This model is utilized to extract 

parameters from the available measured data. For the designing of LNA, artificial neural network is trained 

using three layer architecture as described above. For training and implementing in the ANN toolbox (using 

neural fitting and network tool) of MATLAB software, Levenberg-Marqaurdt back propagation algorithm has 

been used. Experimental data for training of neural network are taken from the Agilent MGA72543 GaAs 

pHEMT Low Noise Amplifier datasheet. To verify the validity of the trained ANN model, experimental data 

[10] are compared with the results of present model. 

 

III. MODELING METHODOLOGY 

This paper proposes a solution to the problem thatstill makes use of the common MLP and RBF models, but 

within a modified ANN architecture. The idea is to find the design parameters in sequence, each one 

constraining the determination of the next one(s). First, an ANN is trained to correctly specify a first design 

parameter. It takes the set of desired performances as input and has only the chosen design parameter as output. 

A. Neural Architecture 

Two common ANN architectures are considered, the multilayer perceptron (MLP) [5] and the radial basis 

functions (RBF) model [6]. Both consist of three layers of neurons in sequence: an input layer, a hidden layer 

and an output layer. 

1) MLP neural network: In the input layer, each neuron simply holds the value it receives. In the hidden layer, 

the output of a neuron j is given by 

(1) 

where M is the number of afferent neurons, xi is the output of the ith input layer neuron, ωi is a weight to be 

determined and f() is an nonlinear output function, often the logistic sigmoid flogsig= 1/1+e
n 

or the hyperbolic 

tangent sigmoid ftansig= 2/1+e
-2n  

-1 .  Within a given MLP, all the hidden layer neurons use the same transfer 

function. In the output layer, the neural outputs take also the form defined in equ. (1), but the identity function is 

usually chosen for the output function (linear output). As a result, the output of a neuron k is given by  

(2) 

Where N is the number of neurons in the hidden layer, zj is the output of the j
th

 hidden layer neuron and ωj is 

also a weight to be determined. 

The neurons are grouped into layers in the MLP neural network. The first and last layers are called input and 

output layers, respectively. Between the input and the output layers, there exists a central part of the neural 

network called a hidden layer. Depending on the complexity of the input response and the desired output, the 

number of the hidden layers and the neurons at each layer can vary, because there always exists a three-layer 
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perceptron that can approximate an arbitrary nonlinear, continuous, multi-dimensional function f with any 

desired accuracy. Therefore, a typical MLP neural network consists of an input layer, a hidden layer and an 

output layer, as shown in figure 3. 

 

Figure 2: A three-layer MLP structure 

For a given input x, the output of a three-layer MLP neural network can be computed by 

              (3) 

i.e. 

   (4) 

The neural model is then trained to learn the input–output relationship from the training data (sample of input–

output data). Specifically training is to determine the neural model parameters, i.e. neural network weights w
i
ij, 

such that the ANN model-predicted output best matches that of the training data. The testing data (new input–

output samples) are used to test the accuracy of the ANN model. 

B. Generic notation  

Let n and m represent the number of input and output neurons of a neural network. Let x be an n-vector 

containing the external inputs to the neural network, y be an m-vector containing the outputs from the output 

neurons, and w be a vector containing all the weight parameters representing various interconnections in the 

neural network. The definition of w, and the manner in which y is computed from x and w, determine the 

structure of the neural network. 

C. Neural network modeling approach  

The neural network can represent the behavior of any microwave device only after learning the original x – y 

relationship through a process called training. Samples of (x- y) data, called the training data, should first be 
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generated from original device EM simulators or from the device measurements. Training is done to determine 

neural network weights w such that the neural model output best matches the training data. A trained neural 

network model can then be used during microwave design providing answers to the task it has learned. The 

original EM based microwave device modeling problem can be expressed as y=f(x) where f is the detailed EM 

based input–output relationship [2]. The neural network model for same device is defined as y= f (x, w). The 

neural-network approach can be compared with conventional approaches for a better understanding. The first 

type is the detailed modeling approach such as EMbased models for passive components and physics-based 

models for active components. The overall model, ideally, is defined by a well-established theory and no 

experimental data is needed for model determination. However, such detailed models are usually 

computationally expensive. The second type is an approximate modeling approach, which uses either empirical 

or equivalent-circuit-based models for passive and active components. The evaluation of approximate models is 

much faster than that of the detailed models. However, the models are limited in terms of accuracy and input 

parameter range over which they can be accurate. The neural-network approach is a new type of modeling 

approach where the model can be developed by learning from accurate data of the RF/microwave component. 

After training, the neural network becomes a fast and accurate model representing the original component 

behaviors. 

D Network size and layers  

For the neural network to be an accurate model of the problem to be learned, a suitable number of hidden 

neurons are needed. The number of hidden neurons depends upon the degree of non-linearity of f and the 

dimensionality of x and y (i.e., values of n and m). Highly nonlinear components need more neurons and 

smoother items need fewer neurons [3]-[4]. However, the universal approximation theorem does not specify as 

to what should be the size of the MLP network. The precise number of hidden neurons required for a given 

modeling task remains an open question. So, either by experience or a trial-and-error process is used to judge 

the number of hidden neurons. The appropriate number of neurons can also be determined through adaptive 

processes, which add/delete neurons during training. The number of layers in the MLP can reflect the degree of 

hierarchical information in the original modeling problem. In general, the MLPs with one or two hidden layers 

(i.e., three- or four-layer MLPs) are commonly used for RF/microwave applications. 

 

V.  RESULTS AND DISCUSSION 

Completion of training, the models developed get tested and evaluated. This included the evaluation of the 

network’s ability to learn the mappings of the training data, as well as its ability to generalize on the test set 

data. Each test vector is used as input to the respective ANN.  

The computed outputs represent the modeled -parameters at the input frequency for each test inductor 
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Figure 5.1: S21 variation bandwidth with different frequencies for LNA 

 

 

Figure 5.2: Return Loss variation bandwidth with 2.2 GHz frequencies for LNA 

 

 

Figure 5.3: Fm(dB) variation bandwidth with different frequencies at 0.50 ,1.0,2.0,5.0 etc. 
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Gain with frequency range 0.1–10 GHz at the same bias condition as the forward transmission coefficient. The 

gain decreases with an increase low level position in frequency and the down  is steep in the frequency range of 

0– 2.2 GHz 

Below figure 5.4, 5.5, 5.6, 5.7 are as S11, S22–S11 and S22 are plotted on smith charts and polar chart 

inrespectively. S11 is equivalent to input complex reflection coefficient (Γin) and S22 is equivalent to output 

complex reflection coefficient (Γout). At the centre of the smith and admittance different angle rotator chart, 

reflection is zero (|Γ | = 0) and at the periphery of thesmith chart reflection is maximum optimized with neural 

network LM data sheet(|Γ | = 1).  

 

 

Figure 5.4: Fm(dB) variation bandwidth with different résistance S11: Input Reflection Coefficient 

(Smith Chart) 

This indicates that the magnitude of S11 and S22 should always be less than 1, otherwise, all the incident waves 

will be reflected in different frequencies level. 

 

Figure 5.5: Fm(dB) variation bandwidth with different résistance S22: Output Reflection Coefficient (Smith 

Chart) 
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Figure 5.6: S12: Reverse Transmission Coefficient (Polar Chart) 

 

Figure 5.7: S21: Forward Transmission Coefficient (Polar Chart) 

 

Figure 5.8: VSWR Plot at 2.2 operating frequencies 
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Figure 5.9:  Train Data using Neural Network –LM with random diversion data sheet 

 

Above neural network specifies that validation error for Root Mean square error plot is 0.00022 .at 1000 

iteration in our proposed approach . 
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VII.  CONCLUSION 

An approach for the microwave nonlinear device modelling technique based on the combination of the 

conventional equivalent circuit model and the artificial neural network (ANN) is presented in this paper. The 

main advantage of the proposed method is that the integration and differential of the ANN can directly be 

carried out from the original ANN. The proposed technique is very useful for neuralbased microwave computer-

aided-design, and for analytically unified dc, small signal and nonlinear device modeling 
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