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ABSTRACT

In this paper, solution of the governing equations of micropolar elastic solid and fluid saturated incompressible
porous solid is employed to study the reflection and transmission phenomenon at a loosely bonded interface
between micropolar elastic solid half space and fluid saturated porous half space. P-wave or SV-wave is
considered to be incident on the plane interface through fluid saturated porous solid half space. The amplitude
ratios of various reflected and transmitted waves are derived and computed numerically for a specific model for
different values of bonding parameter. The results thus obtained are depicted graphically with angle of
incidence of incident wave. It is found that these amplitude ratios depend on angle of incidence of the incident
wave and material properties of the medium. Effect of bonding parameter, fluid filled in the pores of fluid
saturated porous medium on the amplitude ratios is shown.

Keywords: Porous solid, micropolar elastic solid, reflection, transmission, longitudinal wave,

transverse wave, amplitude ratios, empty porous solid, loosely bonded interface.

I. INTRODUCTION

Most of natural and man-made materials, including engineering, geological and biological media, possess a
microstructure. The ordinary classical theory of elasticity fails to describe the microstructure of the material. To
tackle this problem, Suhubi and Eringen [1], Eringen and Suhubi [2] developed a theory in which they
considered the microstructure of the material and they showed that the motion in a granular structure material is
characterized not by a displacement vector but also by a rotation vector. Gautheir [3] found aluminum-epoxy
composite to be a micropolar material. Many problems of waves and vibrations have been discussed in
micropolar elastic solid by several researchers. Some of them are Parfitt and Eringen [4], Tomar and Gogna [5],
Tomar and Kumar [6], Singh and Kumar [7], Kumar and Barak [8] etc.

In the problems of wave propagation at the interface between two elastic half spaces, the contact between them
is normally assumed to be welded. However, in certain situations, there are reasons for expecting that bonding is
not complete. Murty [9] discussed a theoretical model for reflection, transmission, and attenuation of elastic
waves through a loosely bonded interface between two elastic solid half spaces by assuming that the interface
behaves like a dislocation which preserves the continuity of stresses allowing a finite amount of slip. A similar
situation occurs at the two different poroelastic solids, as the liquid present in the porous skeleton may cause the
two media to be loosely bonded. Vashisth and Gogna [10], Kumar and Singh [11] etc. discussed the problems of

reflection and transmission at the loosely bonded interface between two half spaces.
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The mechanical behaviour of fluid saturated porous material when the material contains liquid filled pores with
help of classical theory is inadequate. Due to complicated structures of pores and different motions of solid and
liquid phases, it is very complex and difficult to describe the mechanical behaviour of a fluid saturated porous
medium. So many researchers tried to overcome this difficulty from time to time. Bowen [12] and de Boer and
Ehlers [13- 14] developed an interesting theory for porous medium having all constituents to be incompressible.
There are sufficient reasons for considering the fluid saturated porous constituents as incompressible. Therefore,
the assumption of incompressible constituents meet the properties appearing the in many branches of
engineering and avoids the introduction of many complicated material parameters as considered in the Biot
theory because Biot’s theory was based on the assumption of compressible constituents.

Based on the theory given by de Boer and Ehlers [13-14], many researchers like de Boer and Didwania [15], de
Boer and Liu [16-17], Kumar and Hundal [18], Tajuddin and Hussaini [19], Kumar et.al. [20], Kumari [21-22]
etc. studied some problems of wave propagation in fluid saturated porous media.

Using the theory of de Boer and Ehlers [13-14] for fluid saturated porous medium and Eringen [23] theory for
micropolar elastic solid, the reflection and transmission of longitudinal wave (P-wave) or transverse wave (SV-
wave) at a loosely bonded interface between micropolar elastic solid half space and fluid saturated porous solid
half space is discussed. Amplitudes ratios for various reflected and transmitted waves are computed for a
particular model and depicted graphically and discussed accordingly. The model considered is assumed to exist
in the oceanic crust part of the earth and the propagation of wave through such a model will be of great use in

the fields related to earth sciences.

I1. BASIC EQUATIONS AND CONSTITUTIVE RELATIONS
2.1. For medium M; (Micropolar elastic solid half space)

The equation of motion in micropolar elastic medium are given by Eringen [23] as

. I ¢
ot IV =— 1
(e, + )V PrE: (1)
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Parfitt and Eringen [4] have shown that eq. (1) corresponds to longitudinal wave propagating with velocity ¥,

given by ?1: =¢c,” +c,7 and egs. (2)-(3) are coupled equations in vector potentials U and ¢ and these

correspond to coupled transverse and micro-rotation waves. If :— = 2, there exist two sets of coupled-wave
0

propagating with velocities 1/%; and 1/%;; where

:-,::=%[B—q,,-'3=—+c|, :—J=%[B+-,,-‘B=—+c| 5)

1627 |Page




International Journal of Advance Research in Science and Engineering jé

Volume No.06, Issue No. 10, October 2017 )
IJARSE

www.ijarse.com Nk e
qlp —2J 1 1 ( 1 ij 1 « <

B= 2 2 F: Tz C=l—m——=l—7"7": = : = - G

= (22 + c3%) * 0y cy? w? (et + ) P L+ K ! ¥ (6)

Considering a two dimensional problem by taking the following components of displacement and micro rotation

as
i=(u.0w), &=(0o,0) ()
where
g Bw g Dy
0T dx Az “_ﬂz-l_ﬂx (8)

and components of stresses are as under

i Aty

= {3 2 3 2 _—
tz= 0+ 2u 4 %) PR H‘-“J”C:]axaz. (9)

i flw  Aw
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R
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2.2. For medium M; (Fluid saturated incompressible porous solid half space)

Following de Boer and Ehlers [14], the governing equations in a fluid-saturated incompressible porous medium

are
divin®ks + nfxp) = 0 (12)
divTi —n* grad p + p¥(b — %) —Pf = 0 (13)
divTf —nfgradp+ pf(b — %) + Pf = 0 (14)

where %;and %; (i = 5, F) denote the velocities and accelerations, respectively of solid (S) and fluid (F) phases
of the porous aggregate and p is the effective pore pressure of the incompressible pore fluid. p* and pFare the
densities of the solid and fluid phases respectively and b is the body force per unit volume. T¢ and Tf  are the
effective stress in the solid and fluid phases respectively, Pf is the effective quantity of momentum supply and
n° and n® are the volume fractions satisfying

nF+nf =1 (15)
If us and ug are the displacement vectors for solid and fluid phases, then
Bz =g Hy=1ly; Xp=up Hp=ip (186)
The constitutive equations for linear isotropic, elastic incompressible porous medium are given by de Boer,
Ehlers and Liu [24] as

T§ = 2u°Eg + 2% (Es. I (17)
TE=10 (18
Pf = -5, (g — ag) (19)
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where 3* and pu® are the macroscopic Lame’s parameters of the porous solid and Ec is the linearized

Langrangian strain tensor defined as

1 -
E; =3 (grad uc + grad u;s)

(20)

In the case of isotropic permeability, the tensor 5. describing the coupled interaction between the solid and fluid

is given by de Boer and Ehlers [14] as

¢ F:]" FR
5, =1
K

1)

where yF® is the specific weight of the fluid and K¥ is the Darcy’s permeability coefficient of the porous

medium.

Making the use of (16) in egs. (12)-(14), and with the help of (17)-(20), we obtain
divin®ag +nFag) =0

0F + p%lgrad div ug + pidiv grad ug — n°grad p + p°(b — iiy) +5, (g —ig) = 0

—nfgrad p + pflb —iig) — 5, (g — 1) = 0

For the two dimensional problem, we assume the displacement vector u; (i =F,5) as

u; = (u!, 0, w')
i=FS. (25)
Egs. (22)-(24) with the help of eq. (25) in absence of body forces take the form

5 o Ftw® . gut  Ftwt
L + +7

gxdt | dzdt Axdt Bzat|
ﬂp r3:|_1F gut  du®
Mo P e gt at
F P patwt LA\
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dp #u® fu®  Au®
§, .5 g g g _
R '.:,‘ — — —_
U“Jr“j +“ L N v at
ae* Elp w* gwt  Aw®
§, .5 Sz g _
i VoS — - — =0
O+ Z T P o —p7 [ﬂt Elt]
where
& alu®)  Alw®)
T B * dz
and
72 i #?
_ﬂx:+ﬂz:

Also, t,.% and t..° the normal and tangential stresses in the solid phase are as under

(22}
(23)
(24)

where

26)

@7

(28)

(29)

(30)

(31)

(32)

(33)
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b = (ﬂz + Ax ] (34)
The displacement components 1’ and w are related to the dimensional potential ¢ and U as
8¢ Ay . 8y By
= — - ’]=_—_:I=S-’F' 35
" ox + gz v dz &% ] =

Using eq. (35) in egs. (26)-(30), we obtain the following equations determining &°, &%, °, W& and p as:

S VR |
Vie* - Cy7 2t?  [a+2p%)(nF) Bt =0 (36)

WEVAYE — p® E,:Jb+ [aa_qf_% =0 (38)
(F)?p —npF ﬂﬂf - Svaaif =0 (40)

where
| (nF)208 + 2p5) )

N {T.IF:]:F.S + {T.IS:]:F'F

Assuming the solution of the system of egs. (36)-(40) in the form
(&%, o v 4".p) = (.5 0.7 0% 0, oy ) exp licot) (42)

where w is the complex circular frequency.

Making the use of (42) in egs. (36)-(40), we obtain

l,:.!: lh.'l_: L:I 5 _ 0 43
+ C,2 O + 2u5) (F 2 ¢ = (43)
[5V2 + pPw? — iwS, W, ° = —iwS, " (44)
[—w?pf +iwS, I, F — iS5 = 0 (45)
MF)%p, +7pfw?e,® — iwsS,d, " =0 (46)
7S
b F = _T'I_F by° 47)

Eqg. (43) corresponds to longitudinal wave propagating with velocity v, given by
vii=— (48)

where

Gy, = i S 49
Sl RN e TaE (49)

From egs. (44) and (45), we obtain
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, w] .
Vs — |, =0 (50)
Vg~
Eq. (50) corresponds to transverse wave propagating with velocity v;, given by v,% = 1/G,
Where

s = 1
(s s
b= {u‘-*‘ T [mSv]} (1)

I1l. FORMULATION OF THE PROBLEM
Consider a two dimensional problem by taking the z-axis pointing into the lower half-space and the plane

interface z=0 separating the fluid saturated porous half space M, [z = 0] and micropolar elastic solid half
spaceM; [z<0]. A longitudinal wave or transverse wave propagates through the medium M; and incident at the
plane z=0 and making an angle &; with normal to the surface. Corresponding to incident longitudinal or
transverse wave, we get two reflected waves in the medium M; and three transmitted waves in medium M.

See fig.1

I

Fig.1 Geometry of the problem.
3.1. In medium M,

& = B, expli, (x sinB, — z cosd, ) +im, t} (52)

w = B, explid,(xsinb, — zcash, ) + i@, t} + By explid;(xsinf; — z cash, ) + im, £} (53)
&, = EB, explid,(xsind, — z cosh, ) + im, t} + FB; exp{id,(xsind; —zcosh; ) +id, 1) (54)
where

e 2o 2 o’

0z (D: T F"Zl:l

E= 2 T (55)
deno.
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&

PS a’
_'3'2 ('3'2 _{,:::+,:E:j+F’CI]

F= o6
deno, (36)
and
o . - 5 7 .
denu.=p(2q— _]. &, =k " &7 =k"w" (37}
€y°

3.2. In medium M,

{0, &%, p} = {1.m,, m, A, explik,(xcinf,-z cozB,) + iw, 4 A, explik, (x=inf, + z cosh, ) 4 iw,t}] (58)
and

0 0F} = {1, m B, explik,(xsinBy-z cosBy) 4 fw,t} + A, explik,(xsinf, + z cosh,) + iw,t}] (59)
where
5 3 2 B = .
n NwypT —iw S, w5y
my =g m:=—[ Fyz ]: T 0.5, — w,lpF (60)
n (nF) w5, —w, p

and E; . B, .EB; are amplitudes of transmitted P-wave, transmitted coupled transverse and micro-rotation waves
respectively. Also Ay; or By , A; and A; are amplitudes of incident P-wave or SV-wave, reflected P-wave and

reflected SV-wave respectively and to be determined from boundary conditions.

1IV. BOUNDARY CONDITIONS
The appropriate boundary conditions are the continuity of displacement, micro rotation and stresses at the
interface separating media M; and M;. Mathematically, these boundary conditions at z=0 can be expressed as:

taz =tzz” — P Lax =tay” § Mgy =0; t = k¥ —w: w=w? (61)
where k; = ikgut and © = v/(1 — v)sing,
where 7 is bonding constant 0 = v = 1, v =0 corresponds to smooth surface and v = 1 corresponds to welded
interface.
In order to satisfy the boundary conditions, the extension of the Snell’s law will be

sinf, sinf; sinf; sinf;  sinG;  sin

Vo Vi B Vz Vi V3 - V3 ©2)

where ¥, :ji T :i
For longitudinal wave,

vp=vy: By =8 (63)
For transverse wave,

vp =V By =8 (B34)
Also
8,7, =80t =kt kv, = kv, =, atz=0 (64)

Making the use of potentials given by egs. (52)-(54) and (58)-(59) in the boundary conditions given by (61) and

using (62)-(64), we get a system of five non homogeneous equations which can be written as
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3 L =Y (i=12345) (63)
=t
where
7, = 22 I At S 66
l_BD' :_EDI !_ED' 4_BD' E_BD ': :'

where By = Ay, or By, is amplitude of incident P-wave or SV-wave respectively.
Also Z; to Z; are the amplitude ratios of transmitted longitudinal wave, transmitted coupled transverse wave at
an angle &,, transmitted coupled microrotational wave at an angle &, reflected P wave and reflected SV wave,

respectively. Also 3;; and ¥; are as

a, = —45,° —(2p +x]{51:cus:§l}; a; = (2n £ %)8,%sinB,cos8, ;a5 = (2n 4 x)8; sinB cosh, ;

a,, = k(3% 4 2u°cos?8, ) + m, ; a,. = —2p kisinf, cosh, : a,, = (2u + %3, “sinf, cosh, :
3y, = !..LE-:: cos 2 E: + KB::GDS:E: —xE; a;,; = pBE: cos 2 ﬁg + xﬂgzcnszﬁg —wF; a,, = !..LSI{ESIHEE!L;
a5 = .Uskg cos2f; ; 3y = 0 a3z, = &E EDS@: P g = 5!FEDSE! Poagy =0 3z = 0;
ay,, = (2 + %3, *sinf, cosh, +k,i3,sind, ; a,; = pd;  cos 28, 4+ x8, cos?8, — xE 4 ki d,cos8, ;
342 = .uf:-!: cos 2 E! + KE‘E:EDS:EE —&F + k;i f:-!EI:ISE! ; 34, = —kiikysing;: a;; = —kid kycos8;
g, = —i8,c088, ; a5, = 18,58y A5y = i By5indy; 2zy = —ikycos8, ; ags =ik,sinf, =0

For incident P wave
Yy=—ayy: Yp =ag: Y =ag: Yy=—a,: Y5 =ay
For incident SV wave

Ty =a55: Yp =350 ;=2 Ty =a50 Y5 = —ag (67)

V. NUMERICAL RESULTS AND DISCUSSION

In order to study in more detail the behaviour of various amplitude ratios, we have computed them numerically

for a particular model for which the values of relevant elastic parameters are as follow

In medium Mg, the physical constants for micropolar elastic solid are taken from Gauthier [3] as

N N N 10°k
R=759x 100 —, p=189x 100, x=140x 10—, p=219x !E,

m

. iy
y=268x10* N, j=1.96x10"5m?,  — = 200. (68)

g~
In medium Mg, the physical constants for fluid saturated incompressible porous medium are taken from de Boer,
Ehlers and Liu [24] as
n® =0.67, nf =0.33, p° = 1.3¢ Mg/m®,  pf = 0.33Mg/m?,
MN 0.01m _ 10.00KN _ 8.3750N

¥ =55833—; K'= +FR — -
m* g m*= m*

(6%)

A computer programme in MATLAB has been developed to calculate the modulus of amplitude ratios of

various reflected and transmitted waves for the particular model and to depict graphically. In figures (2) - (21)
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solid lines show the variations of amplitude ratios |Z;| for welded interface i.e. v = 1, dashed lines for bonding
parameter v = 0.2 and dashed dotted line for smooth interface i.e. ¥ = 0. In Figures (2)-(11), there is P wave
incident whereas in figures (12)-(21), SV wave is incident. In the figures (2)-(6) and (12)-(16), medium-I is
porous solid whereas in figures (7)-(11) and (17)-(21), the medium-I is empty porous solid (EPS), but medium-
Il is same in all figures i.e. micropolar elastic solid.

In figures (2)-(11), the values of |Z;l, (i =1.2.3) or modulus of amplitudes ratios corresponding to transmitted
waves are greater for bonding parameter ¥ =1 i.e. for welded interface whereas the values of 1Z;l. (i = 4.3)
are small for modulus of amplitudes ratios corresponding to reflected waves for bonding parameter v =1
Effect of fluid filled in pores of porous solid is significant as it is clear after comparison of figures (2)-(6) and
figures (7)-(11). Effect of incident wave is also significant as it is clear by comparing the figures (2)-(6) to
corresponding figures (12)-(16). The values of |Z;l. (i = 1.2.3.4.5) are greater for bonding parameter v =1 i.e.
for welded interface in case of SV wave incident in comparison to P wave incident. Also, comparing the figures

(12)-(16) to figures (17)-(21), the values of |Z;l. (i = 1.2.3.4.5) are large for in case of porous solid than empty

porous solid.
x10°
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Figures 2-6. Variation of the amplitude ratios with angle of incidence of incident longitudinal wave
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Figures 7-11. Variation of the amplitude ratios with angle of incidence of the incident longitudinal

showing porous effect
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Figures 12-16. Variation of the amplitude ratios with angle of incidence of incident transverse wave
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Figures 17-21. Variation of the amplitude ratios with angle of incidence of incident transverse wave showing

porous effect

V1. CONCLUSION

In conclusion, a mathematical study of reflection and transmission coefficients at loosely bonded interface

separating micropolar elastic solid half space and fluid saturated incompressible porous half space is made when

longitudinal wave or transverse wave is incident. It is observed that

1. The amplitudes ratios of various reflected and transmitted waves are found to be complex valued.

2. The modulus of amplitudes ratios of various reflected and transmitted waves depend on the angle of
incidence of the incident wave and material properties of half spaces.

3. The effect of fluid filled in the pores of incompressible fluid saturated porous medium is significant on the
amplitudes ratios.

4. The effect of incident wave is significant on amplitude ratios. All the amplitudes ratios are found to depend
on incident waves.

5. The effect of bonding parameter for loosely bonded interface is significant either longitudinal wave is
incident or transverse wave is incident.

The model presented in this paper is one of the more realistic forms of the earth models. The present theoretical

results may provide useful information for experimental scientists/researchers/seismologists working in the area

of wave propagation in micropolar elastic solid and fluid saturated incompressible porous solid.
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