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ABSTRACT 

This paper focuses on the concepts of Cardinal B-Spline wavelets, their Properties and description of their 

relations. Spline wavelets are extremely regular and usually symmetric or anti-symmetric. They can be designed 

to have compact support and to achieve optimal time-frequency localization (B-spline wavelets). The underlying 

scaling functions are the B-splines, which are the shortest and most regular scaling functions of order L which 

will be further classified into linear, quadratic or biquadratic spline wavelets. Their graphical representations 

are enclosed herein. 
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I. INTRODUCTION 

In this paper, we try to visualize the basic concepts of B- spline cardinal wavelets and their properties
[1]

. 

A spline wavelet is a wavelet constructed using a spline functionwhich is basically orthogonal, but do not 

have any compact supports. The interpolatory spline wavelets were introduced by C.K. Chui and J.Z. Wang. 

There is a certain class of wavelets, unique in some sense, having compact supports with some special 

properties. These special wavelets are called B-spline wavelets or cardinal B-spline wavelets. A Basis spline, 

often called as B-spline is a spline function that has the minimum support with respect to some 

given degree, sleekness, and domain partition. All spline functions of a given degree can be expressed as Linear 

combination
[6]

 of B-splines of that degree. Due to this reason, B-splines of order ‘n’ are basis functions for 

spline functions of the same order defined over the same knots. Cardinal B-splines have knots that are 

equidistant from each other. 

 

1.1 Definition 

B-spline is a combination of flexible bands that are continuous and passes through a number of points called 

control points. A B-spline of order n  is a polynomialfunction of degree 1n  in a variable t  that guarantees the 

continuity and derivability of the function uptoorder 1n . It is defined over m1 locations jt , called knots 

or breakpoints, which must be in non-descending order .The B-spline always contribute only in the range 

between the first and last of these knots and is zero elsewhere. If each knot is placed at the same 

distance jj tt 1  from its predecessor and typically positioned at the integers, the knot vector and the 

corresponding B-splines are called 'uniform'. 

https://en.wikipedia.org/wiki/Spline_function
https://en.wikipedia.org/wiki/Orthogonality
https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/Support_(mathematics)
https://en.wikipedia.org/wiki/Spline_(mathematics)
https://en.wikipedia.org/wiki/Support_(mathematics)
https://en.wikipedia.org/wiki/Degree_of_a_polynomial
https://en.wikipedia.org/wiki/Smooth_function
https://en.wikipedia.org/wiki/Domain_(mathematics)
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Basis_function
https://en.wikipedia.org/wiki/Polynomial
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Let a vector known as the knot vector be defined as  mtttttT .......,.........,,, 3210 where T is a non 

descending sequence with  1,0it and define control points nPPPP .........,, 210 . Define the degree as 

1 nmp . The "knots" 121 ,.......,  pmpp ttt  are called internal knots. 

Define the basis function as 
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where pj ..,.........3,2,1 . Then the curve defined by 



n

i

pii tNPtC
0

, )()( is a B-spline. A cardinal B-spline 

is a special type of cardinal spline. For any positive integer m the cardinal B-spline of order m, denoted 

by )(tNm is defined recursively as follows which is basically Schoenberg’s representation of splines in terms of 

B splines basis functions 
[2][3] 
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The two-scale relation
[4]

 for B-spline scaling functions of general order m is 
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mkm ktNptN
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)2()(        (3) 

where the two-scale sequence {pk} for B-spline scaling functions are given by : 

  mkforCp k

mm

k   0,2 1
 (4) 

The two-scale relation for B-spline wavelets for general order m is given by 
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II. PROPERTIES OF CARDINAL B SPLINE WAVELETS 

a) By the support of a continuous function which vanishes outside some bounded interval, we mean the 

smallest closed set outside which the function vanishes identically. The standard notation is 

mSuppN Thus, ]1,0[mSuppN  which implies that support of a cardinal B spline wavelet is always 

a closed interval. 

http://mathworld.wolfram.com/InternalKnot.html
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b) The function )(tNm is non-negative, which implies 100)(  mfortNm  

c) trtN
r

m 




1)( . 

d) 1)( 




dttNm
 

e) Few Efficient algorithms for computing )(tNm  and all its derivatives are available
[1]

. The derivative 

of )(tNm is given by )1()()( 11 
 xNtNtN mmm . 

f) The B-splines are symmetric. )(tNm is symmetric for even m and anti symmetric for odd m  about the 

center
2

m
x   

g) The cardinal B splines of order 1,,1  mm NandNisthatmandm  are related as 
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This relation is useful to compute )(tNm at some integer values. Non-zero values of )(tNm for some small m 

are summarized in Table 1. 

Table 1: Non-zero )(kNm values for m = 2,… , 6 

)(tNm  t  

0 1 2 3 4 5 

m  2 0 1 0 ………   

3 0 ½ ½ 0 ……..  

4 0 1/6 2/3 1/6 0 ……. 

5 0 1/24 11/24 11/24 1/24 0 

6 0 1/120 26/120 66/120 26/120 1/120 

h) Cardinal B splines are transformation invariant. 

2.1 Reisz Basis 

For any pair of integers m and j with 𝑚 ≥ 2, the family  

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subspace )(2 RLV m

j   with Reisz bounds A and B given as
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The detailed proof and explanation are being referred
 [1]

 

2.2 Multi Resolution Analysis 
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A function )(2 RL  is said to generate a Multi Resolution Analysis (MRA)
[5]

 if it generates a nested 

sequence of closed subspaces jW j ;  that satisfy the following properties: 

a) jWW jj  1  

b) )()( 22 RListhatspacewholethetoequalisWofRLinclosure
j
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
j
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d) jjj VWW 1  

e) jWxfiffWxf jj  1)2()(  

The property d) describes the orthonormality of the subspaces where jV is the orthogonal complement of 

1jW in jW  

2.3 Spline Interpolation 

The goal of cubic spline interpolation is to get an interpolation formula that is continuous in both the first and 

second derivatives, both within the intervals and at the interpolating nodes. This will give us a smoother 

interpolating function. In general, cubic splines always play an important role than linear interpolation. 

The wavelet interpolation function )(x , is the wavelet function whose scaling function is the interpolation 

spline   )2()( ixdx i . The Fourier transform of spline interpolation wavelet is  
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III. TYPES OF CARDINAL B SPLINE WAVELETS 

The different cardinal B splines of various orders are defined under the convention which starts from 

particularly B spline of order 1, namely, )(1 tN  which takes the value 1 in interval [0,1) and 0 elsewhere. This 

is called as CONSTANT B spline wavelet. 



 


elsewhere

t
tN

0

101
)(1 (10) 

The 1st order B-Spline N1(t) is the Haar scaling function where Haar Scaling Function is defined as sequence of 

rescaled square shaped functions which together forms a wavelet family or basis. The Haar wavelet is till now 

the simplest known form of the wavelets studied over the years. There is a speciality in these wavelets that its 

disadvantage, not being continuous and hence not being differentiable even, is still an advantage for the analysis 

of signals with sudden transitions, such as monitoring of tool failure in machines. Mathematically, Haar Scaling 

function is representated as  
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The two-scale relation for Haar scaling function is 

)12(  )2(  )(  ttt        (12)

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Constant B Spline, )(1 tN  

 

Further, B spline of order 2, namely, )(2 tN is called as linear spline, derived from (2) by replacing 2m and 

defined as  
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Fig.1: Haar scaling function (t). Fig.2: Haar scaling function (t-1). 

Fig.3: Haar scaling function (2t). Fig.4: Haar scaling function (2t-1). 
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Fig.6  LinearB Spline, )(2 tN  

And, the two-scale relation for Linear B-Spline wavelets is derived from (5) by substitutingm=2 
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The two scale sequence kq is obtained by substituting the values of k=0,1,2,3,4 and thus, obtaining the Linear B 

spline wavelet 

of order 2. 

                   (16) 

 

 

Fig.7  LinearB Spline wavelet, )(2 x  

B splines of order 3 and order 4, namely, )()( 43 tNandtN  are called as Quadratic B spline and Cubic B 

spline scaling functions respectively and defined as: 
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The quadratic B spline wavelet is given by 
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Fig. 8Quadratic B Spline )(3 tN and Cubic B spline )(4 tN
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Fig. 9   Quadratic B Spline wavelet )(3 x
 

 

IV. APPLICATIONS 

Due to the orthonormal bases, wavelets provide fast algorithms in numerical aspects in taking approximations. 

Semi-orthogonal compactly supported B spline wavelets behave better and easier than other wavelets in a 

bounded interval or closed intervals. For these reasons, they are good alternatives for solving integral equations. 

Splines are smooth, regular and well behaved functions. Splines of degree n are (n-1) times continuously 

differentiable due to which splines have excellent approximation properties. Convergence properties of splines 

are relevant for coding applications. Bsplines and their wavelet counterparts have excellent localization 

properties so they are good templates for timefrequency signal analysis. The compactly supported Bspline 

wavelets have been found to be powerful tool in many scientific and practical application including 

mathematical approximation, the finite element method, image processing and compression and computer-aided 

geometric design.In computer aided design, computer aided manufacturing and computer graphics, a powerful 

extension of Bsplines is non-uniform rational Bsplines (NURBS). NURBS are essentially Bsplines in 

homogeneous coordinates. Like Bsplines, NURBS control points determine the shape of the curve. 

 

V.  CONCLUSION 

Wavelets constructed via multiresolution analysis taking Bspline as scaling function generate orthonormal basis 

or semi-orthonormal basis depending on order of spline for the wavelet space. Constructed B-spline wavelets 

have a compact support and explicit formulae which reduces the calculation effort. These wavelets are easier to 

handle in bounded interval and due to polynomial function have excellent approximation property. 
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