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ABSTRACT  

This paper gives a basic notion to the Jordan canonical form and its applications. It presents Jordan canonical 

form from linear algebra, as an “almost” diagonal matrix, and compares it to other matrix factorizations.  It 

also shows that any square matrix is similar to a matrix in Jordan canonical form. Some background on the 

Jordan canonical form is given. 
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I. INTRODUCTION 

The Jordan Canonical Form (JCF) is undoubtably the most useful representation for illuminating the structure of 

a single linear transformation acting on a finite-dimensional vector space over C (or a general algebraically 

closed field. 

The Jordan Form 

Let T  L(V) and let λ be an eigenvalue of T. For a positive integer r, the subspace Er(λ) = ker  (T-λI)
r
 is called 

the generalized eigen space of order r associated with λ.  E1 (λ) is an eigenspace associated with λ, since V is 

finite dimensional, there is a positive integer p such that {0} = E0 (λ)   E1 (λ) ….  Ep(λ) = Ep+1(λ) = …….. 

An element x  Er (λ) \ Er-1 (λ) is called a generalized eigenvector of T of order r corresponding to λ. Clearly if x 

is a generalized eigenvector of order r then (T-λI) x is a generalized eigenvector of order r-1. 

A sequence of non zero vectors x1, …., xk is called a Jordan chain of length k associated with eigenvalue λ if 

                                                   T x1 = λ x1, 

                                                    Tx2 = λ x2 + x1 

                                                          ..  

                                                   T xk = λ xk + xk-1. 

 A Jordan chain consists of linearly independent vectors. 

Proof: Let x1, …….,xk  be a Jordan chain for T associated with eigenvalue λ. Assume that α1 x1 +……+ αkxk = 0 

and that r is the largest index such that α r ≠ 0. Clearly r ˃  1. Write then xr = xi and operate (T-

λI)
r-1

 on both sides to get x1 =0, a contradiction. 

The length of a Jordan chain cannot exceed the dimension of the space and the subspace  generated by a Jordan 

chain is T- invariant. If B={x1, …….,  xk} consists of a Jordan chain, W= ˂  B ˃  and T '  is the Linear operator 

on W induced by T then 
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                                                                     λ   1 

                                                                                       .     . 

                             [T ']B  =                                                    .       .            

                                                                                               .        . 

                                                                                                        .      1 

                                                                                                               λ 

This matrix is called the Jordan block of size k associated with eigenvalue λ and we denote it by Jk (λ). Note that 

Jk (λ) – λIk is a nilpotent matrix of order k. 

       If V has a basis which is disjoint union of Jordan chains for T, then the matrix representation of T with 

respect to this basis is a block diagonal matrix with Jordan blocks on the diagonal. This basis is called a Jordan 

basis of V for T, and the corresponding matrix representation a Jordan canonical form for T. 

 

 Existence of Jordan canonical form: If the characteristic polynomial of T splits over K, then V has a Jordan 

basis for T. 

Proof: First assume that T is nilpotent. We prove by induction on n. If T  = 0 or in particular  n=1, then any basis 

of V is a Jordan basis. Suppose that T ≠ 0 and the statement holds for all vector spaces over K of dimension less 

than n. 

     Since T is a nilpotent, W = im T is a proper T-invariant subspace of V. Let T ' be the restriction of T on W. 

Then T '  L (W) and dim W˂  n, by induction hypothesis W has a Jordan basis B' for T '. Let B' = , a 

disjoint union of Jordan chains, that is B’ i = {xi1,….,xini} and  T ' xi1 = T xi1= 0 and   T ' xij = T xij =  

xi j-1  for j  2(1)ni , i 1(1)k. 

Now x11,…, xk1  a re linearly independent vectors of ker T.  Extend it to form a basis of ker T:{x11, ….. , xk1 , y1, 

……, yq}, q  0. Next each xink  W, choose xink+1  such that T xink+1 = xink. Now write B=  , where 

Bi = B'i  {xini+1} for i  1(1)k , and Bk+i = {yi}, for i 1(1)q. We now show that B is a basis of V. 

 

Clearly ׀B׀ =׀B' ׀ +k +q = dim kerT+ dim imT = dimV = n. Next if  

  = 0 

Where αij  K and βr   K. Then operating T on both sides we have       

  = 0, and so  =0 for j  2(1) ni +1, i  1(1)k.  

Thus   = 0 andv which implies that  for i 1(1)k, and  for r  1(1)q as 

{x11, ….. , xk1 , y1, ……, yq} is a basis for ker T. 

      Finally if T is an arbitrary then it follows that the minimal polynomial of T is of the form (x- λ1)
m1

 ……. (x- 

λk)
mk

 , where λ1, …., λk are distinct eigen values of T. By primary decomposition theorem V= V1  …  Vk   

where Vi =ker (T- λi) 
mi

 a T- invariant subspace. Let Ti
 
be the restriction on

 
Vi. Then Ti  L (Vi.) and Si = Ti - λiI 
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is a nilpotent operator on Vi. Therefore Vi has a Jordan basis Bi for Si  and hence for Ti associated with eigenvalue 

λi.  Hence  B  is a Jordan basis for T. 

 Let B be a Jordan basis of  V for T. Then the number of generalized eigen vectors  of  T 

corresponding to eigenvalue λ and of order up to s is dim ker (T-λI)
s
 

Proof. Let B =  be a Jordan basis and is union of disjoint Jordan chains: Bi: {xi1,xi2….,xin
i
 }, i  1 (1)r. 

Let B1 B2,...Bd be all the Jordan chains corresponding to λ. For a positive integer p define 

 

 

We prove by induction on s that ker(T-λI)
s
 has a basis consisting of nonzero elements of the set {  : i  1(1) l, 

j  1(1)s }.This will clearly prove the statement. Since{xi1,xi2….,xli } is a linearly independent subset of ker(T-

λI). Thus to prove the induction hypothesis for s = 1 we need to check that this set is 

actually a basis of ker(T - λI). lf v=  ker(T - λI),then 

0= (T - λI)v 

=


l

i 1

+ 


r

li 1

+    


r

li 1

 

=


r

i 1

 + 


r

li 1

(  

 

Therefore  =0 for j  2(1)mi , i 1(1)l, and for j  1(1)mi ,i  l+1(1)r. Hence v=  and {x11,x21….,xl1 }  

is a basis of ker(T-λI). 

 

Now assume for s. We now show that ker(T-λI)
s+1

 has a basis consisting of  nonzero elements of {  : 

i 1(1)l,j 1(1)s+1}. Since the nonzero elements of this set are already linearly independent, we only need to 

verify that this set spans ker(T-λI)
s+1

. 

Let v=  ker(T - λI)
s+1

.Then (T-λI)v  ker(T-λI)
s
 = ˂  : i 1(1)l, j  1(1)s ˃  

Since 

(T-λI)v= 


l

i 1

 + 


r

li 1

( , 

We have =0 for j  1(1)mi ,i l+1(1)r and also that =0 for j  s+2(1)mi , i 1(1)l,whenever mi> s+1. Hence 

v=


l

i 1

. 

The number of Jordan chains for T of length m associated with eigen 

value λ is 
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                 2 dim ker(T-λI)
m

 - dim ker(T-λI)
m+1

 - dim ker(T-λI)
m-1

, 

                                                                                            or 

                 rank ker(T-λI)
m+1

 + rank ker(T-λI)
m-1

 - 2rank ker(T-λI)
m 

 

Proof. The number of Jordan chains for T of length at least M associated with λ is exactly the number of 

generalized eigenvectors of T of order m  corresponding to λ  which appear in a Jordan basis. By above result 

this is equal to lm= dim ker(T-λI)
m
 - dim ker(T-λI)

m-1
.Therefore the number of Jordan chains for T of length 

exactly equal to m associated with λ is lm- lm+1.let T be a linear operator on V and let cT(x): (x-λ1)
n

1
………(x-

λk)
n

k where λ1,…….. λk 

are distinct eigenvalues of T. Then the matrix representation of T with respect to jordan basis is : J= diag(J1,.. 

.,Jk), where for each i 1(1)k,Ji =diag (J m(i,1)( λi) ,………. J m(i, ri)( λi) ).We order the size of these Jordan blocks 

such that m(i,1)≥ …..≥m(i,ri).Such a matrix J is the Jordan canonical form or simply the Jordan form of T. Note 

that for each eigen value λi the number ri and  m(i,1), …..,m(i,ri) are uniquely determined by T. For each 

eigenvalue λi the numbers ri is the geometric multiplicity of λi and m(i,1)+ …..+m(i,ri)= n the algebraic 

multiplicity of λi. Also it is easy to verify that each Ji is such that Ji - λiIni, is a nilpotent of order m(i,1)Hence the 

minimal polynomial of T is (x-λ1)
m

(11)
………(x-λk)

 m
(k1). 

Now we show by direct matrix multiplications that how an nxn matrix can be transformed to its Jordan form'. 

Let J = Jn (0). Then J
t
 J = I - E11 . 

Proof: J = E12 + …….+ En-1n .    J
t 
 = E21 + …….+ En n-1.  

Thus J
t
 J = (E21 + …….+ En n-1)( E12 + …….+ En-1n) = E22 + …….+ En n = I - E11 . 

Let Jm (0) = J, α  C 
n  

and B  C 
n x.n

. Then 

 

=  

Proof: Direct multiplication of the matrices on the left side and using that Jei+1 = ei, gives the right side. 

Let A be a strictly upper triangular n x n matrix. Then there exists an invertible matrix P and 

positive integers n1 , …. , nk , n1   nk >0 and n1 +…. +nk = n such that P
-1

AP = diag (jn1(0) , 

….. , Jnk(0)). Moreover if A has real entries then P will also have real entries. (without proof) 

 8. Jordan decomposition theorem:     A  C
nxn

  is  similar  to  the  matrix diag (J n
1
( λ1) ,………. Jn

k
( λk) 

),where Jni( λi)  C
n

i
xn

i 
and n1+……+nk=n. each J ni( λi)-  λiI ni is of the form of the above result. This form 

is essentially unique,that its depends only on A and the order of occurrence of eigenvalues. 

Proof. Only uniqueness is required to prove now. For that note that if  λ≠0, rank j
n

m
=m for all the positive 

integers n. For j
m

(0),rank j
m

(0)
n
=0,if n ≥ m and rank )0(

1

j
n

m



- rank )0(j
m

n
=1 for n≤m. write rn(λ)= 
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rank( j
m

( λ) –λIm)
n
 .Then rn-1(λi)- rn(λi) is the number of Jordan blocks of size ateleast n appearing in 

J.Therefore the number of Jordan blocks of size exactly equal to n is (rn-1(λi)- rn(λi))-( rn(λi)- rn+1(λi))= rn-1(λi)-2 

rn(λi)+ rn+1(λi). 

Thus two nxn matrices A and B are similar if and only if they have the same eigen characteristics polynomial 

and for each eigen value λ and positive integer k, 

 rank (A-λI)
k
= rank (B-λI)

k
 

 

II. APPLICATIONS IN GROUP THEORY 

We show that being similar to a Jordan canonical form matrix is a relation that partitions the set of square 

matrices with complex entries M
n×n 

(C). Of course because only one equivalence class has the identity matrix, 

Jordan canonical form does not partition the ring of matrices into subrings. We study the question of forming an 

algebraic structure from the equivalence classes made by partitioning M
n 
(C). We give a lemma on partitioning a 

set into equivalence classes.  

Lemma : Let ∗ be an equivalence relation on a set X. Then the collection of equivalence classes C (x) forms a 

partition of X.  

So by Lemma , if we can show that ∼ is an equivalence relation on M
n×n 

(C), it will show that ∼ partitions that 

set into subsets all similar to a particular Jordan canonical form matrix (so the Jordan form of the subset of each 

subset “represents” the members of that subset). Recall from Cantor’s diagonal proof that the real numbers are 

uncountable, so the complex numbers, which contain the real numbers, are also uncountable. But note that for 

an n × n matrix A = λi , with λi ∈ C, we can have any eigenvalues for A in the complex numbers. Since we 

have partitioned M
n×n 

(C) based on eigenvalues, this gives us uncountably many similarity  equivalence classes. 

Note that for similarity A ∼ B expresses A = P 
−1

BP, for some P. But we can have P = I, and then P 
−1 

= I.  

So we find that ∼ is reflexive, because we have an invertible P such that                  A = P 
−1

AP, as A = A.  

If A ∼ B, then A = P 
−1

BP. But then B = P AP 
−1

 , and we can just have Q = P 
−1

 , which gives us B = Q
−1

AQ, so 

B ∼ A, so ∼ is symmetric. 

 If A ∼ B and B ∼ C, then A = P 
−1

BP and B = Q
−1

CQ. Note that B = P AP 
−1

 , so 

 P AP 
−1

 = Q
−1

CQ. Thus A = P 
−1

Q
−1

CQP. Let R = QP. As P and Q are invertible, R, their  product  is also 

invertible. So R
−1

 = P 
−1

Q
−1

 . Thus A = R
−1

CR, so ∼ is transitive. Thus ∼ is an equivalence relation.  

Hence, by  the partitioning lemma, ∼ partitions M
n×n 

(C) into subsets of matrices similar to some matrix in 

Jordan canonical form (and all similar to each other).  

We can show that the product of two arbitrary matrices in a certain equivalence class is not in general in that 

equivalence class; similarly, the equivalence classes are not themselves closed under addition. As well, 

multiplication of elements in these classes is not well defined, as in general the product of two different choices 

of matrices as representatives of their equivalence class are not in the same equivalence class.  

For example, let us have the following:  

       A =   ,                   B =                 C =    
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 Clearly both A and B are similar to each other, and B is the Jordan canonical form representative of their 

equivalence class. We find that AB = C, and that C is not similar to B
2
 . Thus we cannot make any groupoid 

with matrix multiplication as its operation out of similarity classes, because multiplication of similarity classes 

is not well defined.   

 

III. CONCLUSION 

 The Jordan canonical form has many uses in linear and abstract algebra. When it can happen, diagaonalization 

is quite useful  and it is good to know that we can always get something very close to diagonal form  with 

Jordan canonical form. We also found that we can partition the set of square matrices M
n×n

 (C) into equivalence 

classes of different Jordan canonical forms, but that there does not seem to be any natural algebraic structure 

that can be formed by similarity classes. 

 

REFERENCES 

[1]  R. Fletcher and D.C. Sorensen. An algorithmic derivation of the Jordan canonical form. American 

Mathematical Monthly, 90:12-16, 1983. 

 [2]  A. Galperin and Z. Waksman. An elementary approach to Jordan theory. American Mathematical 

Monthly,87:728-732, 1981.  

[3]  G.H. Golub and J.H. Wilkenson. Ill-conditioned eigensystems and the computation of the Jordan 

Canonical Form. SIAM Review, 18:578-619, 1976. 

[4]  K. Hoffman and R. Kunze. Linear Algebra. Prentice-Hall, Englewood Cliffs, New Jersey, 1971.  

[5]  H. V¨aliaho. An elementary approach to the Jordan form of a matrix. American Mathematical Monthly, 

97:711-714, 1986. 

[6].  Norman J. Bloch, Abstract algebra with applications, Prentice-Hall, Englewood Cliffs, New Jersey, 1987. 

[7] A. J. Coleman, The greatest mathematical paper of all time, Math. Intelligencer 11 (1989), no. 3, 29–38. 

MR 90f:01047  

 

 


