International Journal of Advance Research in Science and Engineering Volume No.06, Issue No. 10, October 2017

IJARSE

WWW.ijarse.com

ISSN: 2319-8354

PARAMETRIC ANALYSIS OF CO₂ LASER DRILLING PROCESS FOR SPRING STEEL – A REVIEW

Siddhant R. Gade¹, Dr. K. H. Inamdar²

¹PG Student, ²Associate Professor, Department of Mechanical Engineering, Walchand College of Engineering, Sangli (India)

ABSTRACT

Now a day's conventional process findings in manufacturing areas is degrading because of their low efficiency and low economy. Laser drilling is a process has been used in non-conventional industries like aerospace, power, electronic, sheet metal forming and related marine applications etc. There are input parameters such as laser power, gas pressure, scanning speed etc. that affect the quality of laser drilled hole like circularity, heat affected zone (HAZ), taper, spatter loss etc. This paper is focusing on research work and results in laser drilling based on Taguchi based experiment. So it is very important to have a good knowledge of process to get a better quality of drilled hole. This review paper, gather the recent development and research work in the area of CO2 laser drilling process.

Keywords: Conventional, CO2 Laser drilling, Parameters

I. INTRODUCTION

1.1 Brief introduction laser drilling

Manufacturing is the process through which transformation of material takes place into goods to satisfy human needs [1]. In the engineering field, it is found to be, a machining is an important area. It is noticed that, there is need to use advanced technologies in the production process to fulfill today's challenges. Laser machining is the advanced machining process belongs to family of machining and laser- based machine tools can be considered as an advanced machining process. Now a day's, laser-based machining processes are referred as non-conventional machining processes.

International Journal of Advance Research in Science and Engineering Volume No.06, Issue No. 10, October 2017 www.ijarse.com

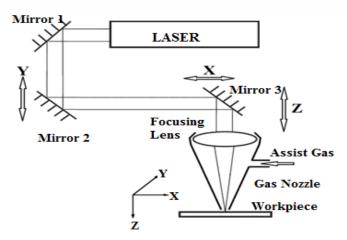


Figure 1: Laser Drilling Process

An American scientist Charles Hard Townes and two Soviet scientists are Alexander Mikhailovich Prokhorov and Nikolai Gennediyevich Basov gave the basic concept of laser [2]. Now a day's laser based machining processes have been widely used for different applications like drilling, cutting, forming etc. If the component is going to be used in a precise device, variation among holes such as taper, roundness etc. must be within certain limits. Laser Drilling is the one of application where the heat of laser beam is used to melt and evaporate the required area of the material. For industry application like in aerospace, power, electronic and sheet metal forming Laser drilling has become an integral part.

The Quality of end product is determined by assessment of geometric features of laser drilled holes such as circularity at the entrance, exit, and taper of hole as well as heat affected zone (HAZ) and spatter loss after laser process [3]. It is possible to control the laser beam precisely by an arrangement of optical setting, so that it is possible to get desired hole features with high accuracy and less defects.. Vaporization and melt ejection are the two mechanisms through which material removed from the workpiece during drilling [4]. Laser drilling is not restricted by the hardness, strength, and brittleness of materials. CO2 laser drilling has become one of the important factors in advanced machine field for its high speed, no tool loss, low cost [5].

1.2 Parameters of laser system

Focal length laser, position of nozzle with respect to material that is distance between them, assist gases, laser wavelength, peak power of laser, pulse width, number of pulses, properties of material, environmental conditions etc. the parameters of laser system affects the quality laser drilled hole [1,3], some of them are discussed below.

Laser wavelength

The spot diameter of laser is depends on the wavelength of laser to be produced, short wavelength with same quality of laser beam can produce spot diameter of small size and vice versa. As spot diameter small the intensity of laser is high and vice versa. Also shorter wavelength lasers have better energy coupling with workpiece and less absorption by plasma [2, 3].

IJARSE

ISSN: 2319-8354

International Journal of Advance Research in Science and Engineering Volume No.06, Issue No. 10, October 2017 IJARSE www.ijarse.com ISSN: 2319-8354

Peak power of laser

The quality of drilled holes increases as power density and peak power of laser beam increases. This is due to ablation process. However it is found that vaporization dominated drilling is slower than molten ejection [3].

Pulse width

Pulse width is known as pulse duration. Short pulse length gives good quality of hole thus there is much more interest having pulse length ranges from a fraction of a microsecond that is 1×10^{-6} micro-second to 1×10^{-15} femto-second range [3].

Assist gas

Numbers of process gases are used to assist the laser drilling process, and are reactive or inert. In CO2 laser drilling, CO2 gas is used as exited gas to produce laser light but not to assist laser process. Oxygen or nitrogen or air as reactive assist gases commonly used [3].

1.3 Types of laser drilling

According to diameter, depth and required accuracy of hole to be produced, there are three main types of laser drilling processes.

Direct drilling

The hole is produced in a single shot of laser pulse; this limits the maximum achievable length in workpiece. Also with direct drilling possibility of taper in hole considerably increases [3].

Percussion drilling

In this type, at fixed location a number of laser pulses are applied on workpiece and each pulse removes the small amount of material. This enables operator to produce hole with considerable depth. But it has limitation; hole with large diameter is not possible [3, 12].

Trepanning drilling

In this process, firstly a hole is quickly pierced to drill the hole into the material, then laser is moved around the desired path of hole. This method is good for large diameter but has slower rate than other two processes [3, 6].

II. LITERATURE REVIEW

Literature review is required to gain precise knowledge about laser drilling process and its analysis. Before going to research directly, it is required to do literature review gives the data related to how much research has been done and where the research gap would available. Drilling of materials like stainless steel and titanium alloys is difficult due to work hardening and rubbing of tools against the hardened zone causing rapid tool wear [7, 8]. Laser drilling is an alternative way for micro-drilling. Since there is no contact between tool and the work materials, the problem of chatter and vibration during machining can be eliminated [9].

International Journal of Advance Research in Science and Engineering Volume No.06, Issue No. 10, October 2017 IJARSE WWW.ijarse.com ISSN: 2319-8354

2.1 Geometry of hole

During manufacturing of circular hole, circularity of hole at entrance and exit are the important attributes as well as taper of hole which greatly influence the quality of drilled hole. To produce the parts from range of one to tens of thousands holes per piece as micro-hole drilling process, Sandip Kumar Bhuyan studied and developed the use of visible and UV sources with correct wavelength and pulse duration. Process having maximum L/D ratio and minimum circulate error gives the best drilling he concluded [10]. Bharatish et al. [11] represents the work on CO2 laser drilling of alumina ceramics. They used orthogonal array experimentation and response surface methodology to find out effect of laser parameters on the quality of drilled holes such as Circularity of drilled hole at the entry and exit, heat affected zone and taper in alumina ceramics. Finally they concluded that, both entrance and exit circularities were significantly influenced by hole diameter and laser power, heat affected zone was influenced by frequency and Taper was also significantly influenced by laser power.

The percussion drilling process, on the basis of repeatability characteristic of produced drilled holes for same fixed parameters investigated by G.K.L. Ng and L. Li [12]. They drilled total 665 holes for 19 set of parameters that is 35 holes for each set. They found that circularity of drilled holes ranges from 0.94 to 0.87 and is correlated with repeatability. Finally they concluded higher peak power and shorter pulse width gives better repeatability of hole geometry. Also Melt ejection and spatter formation contribute to the poor repeatability of the process they concluded. Hussein et al. [13] did the Laser Hole Drilling of Stainless Steel 321H and Steel 33 using 3D CO2 Laser CNC Machine. Firstly they carried out simulation work on COMSOL 3.5A software, for this they took two cases with or without use of assists gases through nozzle to obtain optimum result for temperature distribution. After this they plotted the graph for same two cases, one is between power and diameter of hole, second plot between exposure time and power and lastly they analyses the result. Then they carried out two experimental works with or without assists gases and analyses the result. They found that, as power increases hole diameter increases and quality of hole is increase when assist gas is used. Lastly they compare the experimental with simulated work.

2.2 Heat affected zone (HAZ) and spatter deposition

A heat-affected zone (HAZ) is the portion of the base metal that does not melt during cutting but whose microstructure and mechanical properties were altered by the heat. With the use of femto-second fiber laser micro holes were fabricated by Huan Huang et al. [15] in both transparent (glasses) and non-transparent materials (metals and tissues). Optical microscope and scanning electron microscopy (SEM) were used to characterise and evaluate hole shape and morphology. They found complete absence of visible cracks or thermal damage was observed around the edges of the drilled in both hard and soft tissues. Increased efficiency of the laser beam due to the highly absorptive property of the coating resulted in increased vaporization and reduced molten material. The effect of process parameters on spatter deposition was investigated by Low et al. [16].

Tsay et al. [17] investigated the fatigue crack growth behaviour in 304 stainless steels annealed by a CO2 laser. The notch is produced in laser annealed zone (LAZ) which is perpendicular to LAZ. They showed residual tensile stress obtained around the center of LAZ and the residual stress field changes gradually from tensile into compressive

International Journal of Advance Research in Science and Engineering Volume No.06, Issue No. 10, October 2017 IJARSE www.ijarse.com ISSN: 2319-8354

stress with increasing the distance away from the centreline of LAZ. Experimental result shows that laser-annealed specimen tested under low thermal conductivity had a higher resistance to fatigue crack growth in the region preceding the LAZ after introducing a notch perpendicular to the LAZ. The result showed that residual compressive stresses closes the crack and tensile stress do not allow crack to propagate ahead of tip

2.3 Optimization techniques

Choudhury et al [20] did the laser trepan drilling on Acrylonitrile butadiene styrene (ABS) and Polymethyl methacrylate (PMMA) polymer material. Polymeric material having 5mm thickness with laser power, assist gas pressure, cutting speed and standoff distance were four input parameters chosen for different 2mm, 4mm and 6mm diameter of hole. L9 orthogonal array for different 4 factors and 3 levels for each factor were used to perform experiment. From ANOVA analysis, they found that the optimum levels of 4 process variables were different for different hole size and material. Also they found that for ABS polymer circularity of hole at entrance more than that of exit while for PMMA it was opposite. Taguchi's design of experiment (DoE) technique was used by S. Bandyopadhyay et al. [21] to study the effects of the laser process variables on the quality of the drilled holes and to obtain optimum processing conditions. For laser cutting of Kevlar-49 using CO2 laser, Taweel et al. [22] have proposed a Taguchi method. Implementation of Taguchi method helps to systematically analyze the effect of each parameter on quality of laser drilled hole such as taper, kerf width and dross height. However DoE method is used for optimization of single response; therefore there is need to go for other methods. Grey relation analysis along with DoE suggested by Tosun [23].

III. CONCLUSIONS

The present work just gives an overview of previously done researches and also for new research, it gives a direction for laser drilling using different optimization techniques. The conclusions drawn over here are discussed below,

- (1) The main objective of this literature review is to find out different process and response parameters, optimisation techniques can be used and research gap for future research scope.
- (2) The performance of laser drilling process is mainly depends on number of process parameters like laser power, gas pressure, scanning/cutting speed, pulse width, focal length, standoff distance etc.
- (3) Laser drilling process is non-contact process used for both metals and non-metals.
- (4) The responses like circularity at entrance and exit, HAZ thickness, spatter deposition, hole taper etc. are achieved at optimum level of process parameters.

REFERENCES

- [1] George Chryssolouris, Laser Machining Theory and Practice, Mechanical Engineering Series Book, Springer Publication, Verlag New York, 1991.
- [2] Dr. Ulrich Durr, —Laser Drilling in Industrial Use Strategies and Applications, || Laser Technik, May (2008) 57-59.

International Journal of Advance Research in Science and Engineering Volume No.06, Issue No. 10, October 2017 www.ijarse.com

- **IJARSE** ISSN: 2319-8354
- Bekir Sami Yilbas, Laser Drilling Practical applications, Manufacturing and surface engineering, Springer Publication, Springer Heidelberg New York Dordrecht London, 2013.
- Jeb Collins and Pierre Gremaud, —A Simple Model for Laser Drilling, || Mathematics and Computers in [4] Simulation, 81 (2011) 1541-1552.
- M. Boutinguiza, J. Poua, F. Lusquinosa, F. Quinteroa, R. Sotoa, M. Perez-Amora, K. Watkinsb and W.M. [5] Steen, "CO2 laser Cutting of Slate, Optics and Lasers Engineering, (2002) 15-25.
- I.A. Choudhury, W.C. Chong and G. Vahid, —Hole Qualities in Laser Trepanning of Polymeric Materials, | [6] Optics and Lasers in Engineering, 50 (2012) 1297–1305.
- [7] Yeo C. Y., Tam S. C., Jana S. and Lau M. W., —A technical review of the laser drilling of aerospace materials, || Journal of Materials Processing Technology, 42(1) (1994) 15-49.
- Tansel I., Rodriguez O., Trujillo M., Paz E., and Li W., —Micro-end-milling—I. Wear 102 and breakage, [8] International Journal of Machine Tools and Manufacture, 38(12) (1998) 1419-1436.
- [9] Chryssolouris G., Bredt J., Kordas S., and Wilson E., —Theoretical aspects of a laser machine tool, || Journal of Manufacturing Science and Engineering, 110(1) (1988) 65-70.
- Kumar -Micro-drilling Using ND-YAG (Website [10] Sandip Bhuyan, Laser,|| ethesis.nitrkl.ac.in/1314/1/sandip_project.pdf cited on Wednesday, July 29, 2015, 2:51 pm.).
- [11] A. Bharatish, H.N. Narasimha Murthy, B. Anand, C.D. Madhusoodana, G.S. Praveena and M. Krishna, —Characterization of hole circularity and heat affected zone in pulsed CO2 laser drilling of alumina ceramics, || Optics & Laser Technology, (2013) 22–32.
- [12] G.K.L. Ng and L. Li, —The Effect of Laser Peak Power and Pulse Width on the Hole Geometry Repeatability in Laser Percussion Drilling, Optics & Laser Technology, 33 (2001) 393–402.
- [13] Furat I. Hussein, Ziad A. Taha, Thaier A. Tawfiq and Ahmed B. Jawad, —Laser Hole Drilling of Stainless Steel 321H and Steel 33 Using 3D CO2 Laser CNC Machine, Iraqui Journal of Laser, 10 (2011) 15-21.
- [14] Henrikki Pantsar, Hans Herfurth, Stefan Heinemann, Petri Laakso, Raimo Penttila, Yi Liu and Golam Newaz, —Laser Microvia Drilling and Ablation of Silicon using 355Nm Pico and Nanosecond Pulses, Laser Micro processing Conference, (2008) 278-287.
- [15] Huan Huang, Lih-Mei Yang and Jian Liu, —Micro-Hole Drilling with Femtosecond Fiber Laser, San Francisco, California, USA, Optical Engineering, 53(5) May (2014) 1-8.
- [16] Low DKY, Li. L and Byrd PJ, —The effect of process parameters on spatter deposition in laser percussion drilling, || Optics and Laser Technology, 32(5) (2000) 347–54.
- [17] L.W. Tsay, M.C. Young, F.Y. Chouc and R.K. Shiue, —The Effect of Residual Thermal Stresses on the Fatigue Crack Growth of Laser-Annealed 304 Stainless Steels, Materials Chemistry and Physics, 88 (2004) 348-352.

International Journal of Advance Research in Science and Engineering Volume No.06, Issue No. 10, October 2017 www.ijarse.com

- [18] Nagesh S., Narasimha Murthy H.N., Krishna M., and Basavaraj H., —Parametric study of CO2 laser drilling of carbon nano-powder/vinylester/glass nano-composites using design of experiments and grey relational analysis, || Optics and Laser Technology, 48 (2013) 480-488.
- [19] Brajdic M., Walther K., and Eppelt U., —Analysis of laser drilled deep holes in stainless steel by superposed pulsed Nd: YAG laser radiation, || Optics and lasers in engineering, 46(9) (2008) 648-655.
- [20] I.A. Choudhury, W.C. Chong and G. Vahid, —Hole qualities in laser trepanning of polymeric materials, || Optics and Lasers in Engineering, 50 (2012) 1297–1305.
- [21] S. Bandyopadhyay, Hina Gokhale, J.K. Sarin Sundar, G. Sundararajan and S.V. Joshi, —A statistical approach to determine process parameter impact in Nd:YAG laser drilling of IN718 and Ti-6Al-4V sheets,|| Optics and Lasers in Engineering, 43 (2005) 163–182.
- [22] El-Taweel T. A., Abdel-Maaboud A. M., Azzam B. S., and Mohammad A.E., —Parametric studies on the CO2 laser cutting of kevlar-49 composite, The International Journal of Advanced Manufacturing Technology, 40(9-10) (2009) 907-917.
- [23] Tosun N., —Determination of optimum parameters for multi-performance characteristics in drilling by using grey relational analysis, || The International Journal of Advanced Manufacturing Technology, 28(5-6) (2006) 450-455.
- [24] S. Nagesh, H.N. Narasimha Murthy, Ratna Pal, M. Krishna and B. S. Satyanarayana, —Influence of nano fillers on the quality of co2 laser drilling in vinylester/ glass using orthogonal array experiments and grey relational analysis, Optics & Laser Technology, 69 (2015) 23–33.
- [25] Sambit nandi and Arunanshu S. Kuar, —Parametric optimisation of Nd:YAG laser micro-drilling of alumina using NSGA II, Int. J. Machining and Machinability of Materials, 17(1)(2015) 1-21.

IJARSE

ISSN: 2319-8354