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ABSTRACT  

In this paper we find certain bounds for the zeros of a polynomial with complex coefficients. Our results give 

generalizations and refinements of many known results in the field. 
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I.INTRODUCTION 

Locating a region containing all or some of the zeros of a polynomial plays an important role in various 

branches of mathematics such as communication theory, coding theory, control theory, cryptography, signal 

processing, graph theory, mathematical biology etc. The problem of locating regions containing the zeros of a 

polynomial has a long history dating back to Gauss[2,3]  who gave a bound for all the zeros of a polynomial in 

terms of its coefficients. A fresh start was made by Cauchy [2,3] who proved the following result: 
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Another optimal bound for all the zeros of a polynomial was given by Fujiwara [2,3] in the following theorem: 
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Several improvements and generalizations of the above results are available in the literature. Recently Gulzar et 

al. [1] obtained a refinement of the zero bounds given by Cauchy, Toya, Carmichael and Mason, Williams (see 

[2,p. 122-126])  by proving the following result: 
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II .MAIN RESULTS 

In this paper we prove the following theorem. 

Theorem 1.All the zeros of the polynomial 



n

j

j

j zazP
0

)( of degree n lie in the disk  

qqA
z

1

2

411













 
 ,where 

                    ,0,
)(

12

1

0

221121














 
 





 aa
a

aaa
A

pn

j

p

n

jjj 
 

p>1,q>1 with 111   qp and  C21,  with 0)( 121  nn aa   . 

      Taking 0, 21    in Theorem 1, we get the following interesting refinement of Theorem C: 

Corollary 1. All the zeros of the polynomial 
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where p>1,q>1 with 111   qp , C and pM is defined as in Theorem C. 

Remark 1. Note  that  
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which is true. 

Hence it follows that the bound given by Theorem 1 is sharper than the bound given by Theorem C. 

 

III. PROOFS OF THEOREMS 

Proof of Theorem 1: Consider the polynomial  
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Then , for 1z , we have, by using the hypothesis and the Holder’s inequality, 
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Since the positive root of the real equation 02  qAxx is 
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