

481 | P a g e

Proximity Keyword Search in Xml Documents Using

CTREE Index

J K Swapna
1
, G.Vijaya Lakshmi

2

1
Department of Computer Science, Vikrama Simhapuri University, Nellore, AP, (India)

2
Department of Computer Science, Vikrama Simhapuri University, Nellore, AP, (India)

ABSTRACT

Proximity Keyword Search is especially useful when searching on the web and in long unstructured

documents such as XML. This system is designed to handle novel features of Proximity Keyword

Search in XML documents. It concentrates mainly on producing ranked results efficiently for

keyword search queries over XML documents. The proposed system is first of its kind in which the

keyword string is preprocessed before searching the XML document. This system eliminates the stop

words and spaces entered by the user before locating the elements which contain the keywords. The

search is case insensitive. In particular, this system is implemented in two stages. In pre processing

stage, a set of keyword indices are built using CTREE concept for a set of XML documents. In the

searching phase, the keywords entered by the user are analyzed and searched. Lowest common

ancestor of the given keywords is computed and the results are ranked based upon the distance

between the keywords located.

Keywords: CTREE, Indexing, Keyword Proximity Search, Minimal Connecting Trees, XML.

I. INTRODUCTION

This section gives a brief introduction of XML and HTML keyword searching. It identifies the differences

between searching XML and HTML documents.

1.1 HTML

HTML, Hypertext Markup Language (HTML) [1] is the standard markup language for creating web pages and

web applications. Most documents on the web are currently stored and transmitted in HTML. One of the

strengths of HTML is its simplicity, allowing it to be used by a wide variety of users. However, its simplicity is

arguably is one of its weaknesses, with the growing need of users who want to create their tags to simplify their

own tasks. In an attempt to satisfy this demand, W3C has produced a standard called the eXtensible Markup

Language (XML), which could preserve the general application independence that makes HTML portable and

powerful and adds many more new features.

1.2 XML

XML[2] is a restricted version of SGML (Standard Generalized Markup Language), designed especially for

482 | P a g e

Web documents. For example, XML supports links that point to multiple documents, as opposed to an HTML

link that can reference just one destination document. XML is a format for representing semi structured data,

since it allows more flexibility by not constraining to single structure. XML is designed to describe data on the

web, basically Internet. XML allows us to define our own tags. XML used DTD (Document Type Definition) or

XML Schema to describe the structure of the data. XML with a DTD or XML schema is self descriptive. XML

is a W3C recommendation. XML is not a replacement for HTML (Hyper Text MarkUp Language). HTML is

designed to describe the presentation of the content, while XML is designed to describe the content. As said

before, XML allows the user to define his own document structure. Every starting tag needs an ending tag.

Hence XML is strictly tag matching, unlike HTML.

1.3 Document Type Definition:

A document type definition (DTD) is a set of markup declarations that define a document type for an SGML-

family markup language (SGML, XML, HTML). A Document Type Definition (DTD) [3] defines the legal

building blocks of an XML document. It defines the document structure with a list of legal elements and

attributes. A DTD specifies a set of grammar rules. The grammar is specified using EBNF (Extended Backus

Naur Form), not XML syntax. An application can use a standard DTD to verify that the data it receives from the

outside world is valid. A DTD can be declared inline in a XML document, or as an external reference.

1.4 XPath :

XPATH [4] is a query language for XML. XPATH is used to address parts of an XML document. XPATH is used

to navigate through elements and attributes in XML documents to retrieve the required information. It uses

various path expressions to navigate through XML documents. It also includes standard set of functions. XPath

uses path expressions to select nodes or node-sets in an XML document. A path expression consists of one or

more location steps separated by a slash. A location step selects a set of nodes relative to the context node and

the selected nodes will be the context node set for the next location step. There are two kinds of path

expressions, relative and absolute. An absolute path starts from the root element i.e it starts with '/' and a relative

path can start with any element. A location step is of the form axis:node-test[predicate(s)]. An axis specifies the

tree structured relationship.

1.5 Proximity Search:

Finding several terms that are close to one another is a way to make the search results more relevant, i.e. make

the search more semantic. This feature is called Proximity Search [5];it’s especially useful when searching on the

web and in long, unstructured documents A familiar example is to search for the word manage close to the word

people, to find bios of those who have managed people, vs. profiles that just have both words somewhere in the

text. Another example would be to look for a school name close to the year of graduation. Applications of

proximity search are multiple. Standard full-text search with TF/IDF treats documents, or at least each field

within a document, as a big bag of words. The match query can tell us whether that bag contains our search

terms, but that is only part of the story. It can’t tell us anything about the relationship between words.

Consider the difference between these sentences:

“Sue ate the alligator.”

483 | P a g e

“The alligator ate Sue.”

“Sue never goes anywhere without her alligator-skin purse.”

A match query for sue alligator would match all three documents, but it doesn’t tell us whether the two words

form part of the same idea, or even the same paragraph. Understanding how words relate to each other is a

complicated problem, and we can’t solve it by just using another type of query, but we can at least find words

that appear to be related because they appear near each other or even right next to each other.Each document

may be much longer than the examples we have presented: Sue and alligator may be separated by paragraphs of

other text. Perhaps we still want to return these documents in which the words are widely separated, but we want

to give documents in which the words are close together a higher relevance score. This relevance we can term as

proximity of search terms.

1.6 Searching Documents

1.6.1 Need of Proximity Keyword Search in XML Documents

One of the key advantages of keyword search querying is its simplicity – users do not have to learn a complex

query language, and can issue queries without any prior knowledge about the structure of the underlying data..

Since the keyword search query interface is very flexible, queries may not always be precise and can potentially

return a large number of query results, especially in large document collections. Consequently, an important

requirement for keyword search is to rank the query results so that most relevant results appear first. Nowadays,

most popular search engines such as Google, Bing, MSN Search are all based on HTML documents. But

eXtensible Markup Language (XML) has recently emerged as the document standard for representation and

exchange of data on the web since it offers the following benefits.

 It is robust and its logically-verificable format is based on the International Standards.

 The hierarchical structure is suitable for most types of documents.

1.6.2 Limitations of Current Search Engines

Despite the success of HTML based keyword search engines, according to Fang et al[6] three short comings

could emerge when we employ the same techniques to search XML documents.

1 HTML search engine simply matches the keywords offered by users in HTML documents, and does not

consider meta data (such as XML tags), thus loosing out semantics.

2 Current Search engines always return the entire documents as search results instead of the Nested XML

elements that contain the desired keywords. Since large scale of XML documents may contain thousands of

elements, the returned entire document will contain many undesired contents.

3 Using XQUERY[7] to query semi structured XML data needs the naive users to have sufficient

knowledge of syntax and structure of XML documents.

1.7 Purpose of this research

The proposed work transforms XML documents of any organization into Ctree[8]. With the help of Ctree an

index is built on all words present in the documents. It provides an interface which assists user of this system to

search keywords in The XML documents. The keywords submitted by the user are analyzed by filtering out the

484 | P a g e

spaces, tabs, stop words and further the keywords are converted into lower case. The algorithm locates the

elements which contains the keywords from the Ctree Index table. After locating the elements, with the help of

other entries of the index table such s groups, parent elements, lowest common ancestor of the keywords is

located. Edge Distance is measured from the lowest common ancestor to elements which contain the keywords

is computed. Score is assigned to each XML document based upon the number of keywords matched in the

document. Finally based on the score and edge distance, the lowest common ancestor of the keywords with

edge distance is displayed.

1.8 Contents of the Paper:

Section 2 briefly reviews the previous work followed by motivation for the present study. Section3 gives the

design of the proposed research . It describes the Ctree Indexing concept followed by searching algorithm.

Section 4 presents implementation details. Section 5 concludes the paper with limitations and future work.

II. LITERATURE SURVEY

2.1 Finding Top-k Answers in Node Proximity Search Using Distribution State Transition

Graph [9] 2016

An efficient method for computing the node proximity is one of the most challenging problems for many

applications such as recommendation systems and social networks. Regarding large-scale, mutable datasets and

user queries, top-k query processing has gained significant interest. Jaehui Park and Sang-Goo Lee presents a

novel method to find top-k answers in a node proximity search based on the well-known measure, Personalized

PageRank (PPR). First, they deduct a distribution state transition graph (DSTG) to depict iterative steps for

solving the PPR equation. Second, they proposed a weight distribution model of a DSTG to capture the states of

intermediate PPR scores and their distribution. Using a DSTG, they selectively followed and compared multiple

random paths with different lengths to find the most promising nodes. The limitation of this work is that it cant

be applied directly to XML document

2.2 Ranking Friendly Result Composition for XML Keyword Search [10] – 2015

This paper addresses an open problem of keyword search in XML trees: given relevant matches to

keywords, how to compose query results properly so that they can be effectively ranked and easily understood

by users. The approaches adopted in the literature are oblivious to user search intention, making ranking

schemes ineffective on such results. Intuitively,each query has a search target and each result should contain

exactly one instance of the search target along with its evidence about its relevance to the query. In this paper,

we design algorithms that compose atomic and intact query results driven by users’ search targets. To infer

search targets, we analyze return specific ations in the query, the modifying relationship among keyword

matches and the entities involved in the search.

2.3 A novel XML keyword query approach using entity subtree 2010 [11]

Keyword query is an important means to find object information in XML document. Most of the existing

keyword query approaches adopt the subtrees rooted at the smallest lowest common ancestors of the keyword

matching nodes as the basic result units. The structural relationships among XML nodes are excessively

485 | P a g e

emphasized but the semantic relevance is not fully exploited. To change this situation, they proposed the concept

of entity subtree and emphasis the semantic relevance among different nodes as querying information from

XML. In their approach, keyword query cases are improved to a new keyword-based query language, Grouping

and Categorization Keyword Expression (GCKE) and the core query algorithm, finding entity subtrees (FEST)

is proposed to return high quality results by fully using the keyword semantic meanings exposed by GCKE.

2.4 Exploit Keyword Query Semantics and Structure of Data for Effective XML Keyword

Search [12] – 2010 :

In this paper, they first studied query keyword patterns in order to exploit the user’s search intention behind the

input keywords. The outcome of this task is that keywords in the query are classified as required information and

search conditions (or predicates). In addition, unlike previous work their work only returns desired fragments as

results. Each returned result must satisfy the search conditions rather than simply contain all query keywords. To

further prune irrelevant fragments they introduced a novel notion called Relevant Lowest Common Ancestor

(RLCA) which effectively and precisely captures the meaningful and relevant fragments to the given keyword

query.

2.5 Issues Identified in searching XML documents:

In relation with keyword proximity search there are several open research issues like:

 Finding the Lowest Common Ancestor of two nodes with least number of node comparisons which is better

than the algorithm proposed by Vagelis et al.[13].

 Building efficient index which helps in retrieving matched keywords when XML data is either pre processed

or not.

 Can we reduce keyword proximity search problem to sub sequence matching problem on XML data using

MPS[6].

Essentially querying XML data is equivalent to finding the sub-structures matching the query structure in the

XML documents data graph.

2.6 Motivation

The User is always interested in finding how closely the keywords are associated instead of where that keywords

appeared in a list of XML documents. Though Vagelis at al.[13] proposed an idea which finds how closely the

keywords are associated, it is a bit complicated. It doesn't display the resulting XML sub tress rank wise. Our

idea uses efficient indexing which helps in computing the LCA with less complexity. It also displays the XML

subtress by ranking them based on edge distance. It processes the keywords entered by the user before

searching.

III. CONTRIBUTION

3.1 : System Design

The design of the proposed system is divided into three steps as shown in figure 3.1.

 Using Ctree based indexing to index the XML documents. This requires XML documents to be parsed and

stored them in relational database in the form of tables. And building an index on this tabular data.

486 | P a g e

 The second major step is to efficiently use the Ctree index to compute the Xml subtrees which contain all the

keywords entered by the user.

 The final step is displaying the XML subtrees by ranking them based on edge distance from the Lowest

Common Ancestor of the elements which contain the keywords.

The above activities are handled by three different sub-systems. They are explained in detail in the following

sections.

Fig 3.1 : Components of Proposed System Fig 3.2 : Example XML Tree

3.2 Ctree Based Indexing

Ctree[8] is a two-level tree which provides a concise structure summary at its group level and detailed child-

parent links at its element level which can provide fast access to element's parents. At the group level, Ctree

provides a summarized view of hierarchical structures. At the element level, Ctree preserves detailed child-

parent links. Each group in Ctree has an array mapping elements to their parents. We now define label path,

equivalent nodes, Path Summary which helps in describing the Ctree.

label path :A label path for a node v in an XNL data tree D, denoted by L(v), is a sequence of dot separated

labels of the nodes on the path from the root node to v. For example, node 8 in Figure 3.2 can be reached from

Figure 3.3 : Path Summary and its equivalent Ctree

the root node 1 through the path: 1-6-8. So label path for node 8 is dblp.thesis.author

equivalent nodes: Nodes in an XML data tree D are equivalent if they have the same label path. For example,

487 | P a g e

nodes 8 and 12 in Figure 3.2 are equivalent since their label paths are the same dblp.thesis.author.

Path Summary: Path Summary [39], [40] is a tree on which each node is called a group and corresponds to

exactly one label path l in D. Path summary is called an ordered path summary if the equivalent nodes in every

group are sorted by their pre-order identifiers. An ordered path summary for the XML data tree is shown in

Figure 3.3. Each dotted box represents a group and the numbers in the box are the identifiers of equivalent data

nodes. Each group has a label and an identifier listed above the group. For example, data nodes2,13,16 of XML

document in Fig 3.3 are in group 1 since their label path are the same: dblp.article. Every data tree has a unique

path summary. We now define Ctree as we undersood Path Summary.

Definition : A ctree is a rooted tree where each node g, called a group, contains an array of elements denoted as

g.pid[] such that:

1 Each group g is associated with an identifier and a name, denoted by g.id and g,name

respectively.

2 Edge directions are from root to the leaves. If there is an edge from g1 to g2 , then g1 is called

the parent of g2 and g2 is called a child of g1. If there is a path from g1to g3, then g1 is called an

ancestor of g3 and g3 is called a descendant of g1.

3 An array index k of g.pid[] reperesents an element in g, denoted by g:k. The value of g.pid[k]

points to an element in g's parent gp; and gp:g.pid[k] is called the parent element of g:k

4 For any two elements g:k1 and g:k2, if k1< k2, then g.pid[k1] <= g.pid[k2].

For example , Fig 3.3 (b) is sample Ctree. There is an array in each group. The array values are shown in the

box separated by a comma. The array indexes are the positions of the values numbered starting from 0. The two

elements in group 4(year) are referred by 4:0(first child of article element) and 4:1(second child of article

element), whose values are 0 and 2 which are relative references.

3.3 Searching Keywords:

The Ctree index supports a search(word) operation. The search operation returns a list of absolute elements

(when gid is not specified) or relative element (when the gid is specified). Since the inverted index is clustered

by (wid,gid,eid), the operation serach (wid,gid) can be computed very efficiently once the value is mapped to a

wid. Once we know the element id's and group id's where the keywords have occurred, we can use our LCA

algorithm to find the Lowest Common Ancestor which connects the keywords.

The algorithm is as follows:

1. Find the group id's and element id's of the given keywords from the index table and store it in two lists.

2. If the group id's of all the keywords are same, check their element id's are equal.

 (a) If they are equal – Display the element id along with the given keywords.

 (b) If they are not equal – Compute the LCA of the keywords by retrieving their parent element ids and

group ids.

Else

(a) Retrieve the depth of each keyword. Let p and q be the keywords which are at maximum depth and minimum

depth respectively.

488 | P a g e

(b) Recursively reach to the ancestor of every keyword which is at level(q) from the keywords which have depth

<= p.

3. Compute the LCA of the ancestors.

4. Rank the results based upon the distance between the keywords.

3.4 Score of a XML Document:

In addition to distance between the keywords, a metric known as score is also computed for every XML

document. Lets assume the user has submitted n keywords. If a XML document contains all n keywords, its

score is defined as 100. With n keywords we can find n! Combinations. If a XML document contains less than n

number of keywords say p, its score is defines as 100 - ((p/n!) * 100). For example, with 3 keywords, there are

6 possible combinations. Score of a XML document which contains all 3 keywords is 100 percent. Score for an

XML document which contains 2 keywords is 100 -((2/6)*100).

3.5 Displaying the Results:

The LCA's which are computed for the given set of keywords are stored with the distance between the keywords

from the LCA. Every subtree with LCA computed is stored. These subtrees are ranked and displayed.

According to the typical assumption of keyword proximity systems smaller MCT's are considered better

solutions since they provide a closer connection between the keywords. For example if the user submits the

keywords Tom, Dick,

Harry against the XML document of Figure 3.4, Figure 3.5 shows the possible minimum connecting trees.

Figure 3.4 (a) Example Xml Document (b) Corresponding Ctree

We can infer from the Figure 3.5 that MCT(2) is better than MCT(1) and MCT(3) since MCT(3) shows that the

three authors are linked through different papers in the same session, while MCT(1) shows that they are linked

through only two different papers in the same session. If the user wants to see the additional details about the

groups or any meta data, an option is provided for the same.

489 | P a g e

 Figure 3.5 : Minimum Connecting Trees of Keywords Tom, Dick and Harry

IV. SYSTEM IMPLEMENTATION

The system is implemented in Java on a linux machine. SAX parser is used for parsing the XML document.

JAVA API is used to process the XML documents and build the Ctree. Oracle Database is used to store the data

in the tables. JavaScript is used to display the results graphically to the user. The entire system is implemented in

four modules.

1. dbase: deals with establishing a connection with the database. 2

2. indexing: It contains the following three components.

 Analyzer : Helps in analyzing the given keywords by filtering out the white spaces, converting all upper

case letters to lowercase letters, tokenizing the keyword strings and deleting the stop words.

 CTree: This deals with creation of necessary tables to build the database for the given XML documents.

It creates the necessary tables such as Elements, groups, FileDetails, ElementPositions etc.

 Parser: This component parses the given XML documents and builds an index based on the content

present in XML tags.

 init: It configures the JBOSS with our application files

 .search engine: It takes input from the user, starts searching the keywords, ranks the distance between

the keywords and displays the results.

4.1 Implementing CTREE

Ctree index is mapped into four tables: a.Elements : It stores the mappings from elements to their parents, b.

Groups: It stores the group level tree by gid, subnum (the number of descendant groups) , levl (the depth of the

group), and pgid(parent group). It also stores the group name, and label path. The CtreeDB table contains one

row for each Ctree including the Ctree name, the file group, the number of groups and elements. The ElmPosLen

table records the position and length of each element, which is useful for retrieving the element.

490 | P a g e

The invert table uses the table Words to map a word to an identifier (wid) which minimizes storage overhead by

eliminating expensive string comparisons. The table Hits stores the occurrences and positions (pos) of words

(wid) in XML elements (gid:eid). The XML files stores all the XML documents of the Ctree which are required

if a user wants to look up the source of an element. Tables 4.1, 4.2, 4.3, 4.4 shows values populated in Elements,

Groups, ElmPosLen, Words tables when the example XML document Fig 3.4 is converted into Ctree. An

inverted index is built on the words table based on keywords present in the XML data. This index returns a list

of absolute elements and the group ids which contain keyword ki. Since the Invert value index is clustered by

(wid, gid, eid0, the operation search(wid,gid) can be computed very efficiently once the value is mapped to a

wid.

4.1.2 Searching the keywords:

Suppose the user enters the keywords k1 and k2 in the search interface. From the index table retrieve the wid's

where the keywords are occurred. From the list of wid's, retrieve gid and eid from the words table, from this

list, retrieve the ParElmId and level from ElmPosLen table and groups table respectively. Now compare the

ParElmId's of two keywords. If they are equal, then the element with the ParElmId is the LCA of the keywords.

The distance from the LCA to these keywords is two. If the ParElmId's of the elements which contain the

keywords are not equal, then check whether their levels are equal. If they are equal, retrieve the ParElmId's of

the parents of the elements which contain the keyword. If they are equal, then we found the LCA with edge

distance 4. If the levels are not equal, then recursively find out the ParElmId's until the level of the parElmId's

become equivalent. Update the edge distance as we iterate to find out the LCA.

491 | P a g e

KEYWORD LIST

“Tom” Occurrences “Harry” Occurrenceswidgigideidwidgideid2461453486413541284179419Keyword Tom

has occurred in group 4 four times with wid's 2,3,5,9. Keyword Harry has occurred in group 4 three times with

wid's 1,6,8. Lets compute the LCA for word id's 2 and 1. wid 2 belongs to group 4 and is contained in element

with eid is 6. wid 1 belongs to group 4 and is contained in element with eid is 5. ParElmId of element with eid 6

is 4. ParElmId of element with eid 5 is 4. Since both elements ParElmId's are equal, this is the LCA of keywords

Tom and harry with edge distance is 2. Lets compute LCA for the id's 8 and 9. wid's 8 and 9 are occurred in

elements with eid's 17 and 19 respectively. Their parElmId's are 16 and 18 respectively. Since they are not

equal, retrieve at which level they have occurred and update the edge distance s 2. Both the elements are at same

level. Now find out the parents of elements with eid's 17 and 19. ParElmId of 17 and 19 is 4. So add two to edge

distance value. Element with eid 4 is the LCA of the keywords with edge distance 4. Keyword Tom has occurred

4 times while Harry has occurred 3 times in the document. So there are 12 possible LCA's. LCA's of all the

possible combinations are calculated with edge distance. The LCA with least distance is displayed first.

4.1.3 Analyzing the keywords : When the user submits the keywords, all the white spaces between them are

removed, and the keywords are checked with stopwords list and are removed. Besides this, all the symbols such

as +, -, /, * are also filtered out.

4.1.4 Displaying the results: Results are displayed to the user graphically. Details such as field, fileName,

group name, combination of search keywords, time taken to search are displayed to user. The user is also

provided with the option of a link that will display how those keywords are related.

V. CONCLUSION

Unlike previous works, this work provides the distance analysis of the keywords. The entire XML document is

stored in in-memory as the trees are stored in the form of Ctree. The Ctree index helps in efficiently computing

LCA which is different than [9]. There is no need to maintain separate index files unlike previous approaches.

VI. SCOPE FOR FUTURE WORK

Issues related to grouping similar minimum connecting trees such as isomorphic trees, filtering out redundant

trees are not addressed. Techniques to group the redundant results with the help of Ctree index needs to be

explored. Index updation must be taken care. Further it can be extended to compute LCA of any number of

keywords by sorting the parent element ids which contain the keywords.

REFERENCES

[1] Available at http://www.w3schoold.com/html

[2] Available at http://www.w3.org/Consortium/XML

[3] Available at http://www.w3schools.com/dtd/

[4] J. Clark and S.Derose, 'XML Path Language X Path Version 1.0 W3C'

[5] Proximity Search : https://www.elastic.co/guide/en/elasticsearch/guide/current/proximity-matching.html

492 | P a g e

[6] Fang wan, ya-Nan hao, “The study of key techniques in Intelligent Search Engine”, in the Proceedings of the

3
rd

 International Coneference on Machine Learning, August 2004.

[7] Available at http://www.w3.org/Consortium/XMLQUERY

[8] Qinghua Zou, Shaorong Liu, Welsley W.Chu, “Ctree: A Compact Tree for Indexing XML Data”, in WIDM

2004.

[9] Jaehui Park and Sang-Goo lee, “Finding Top-k Answers in Node Proximity Search Using Distribution State

Transition Graph” in ETRI Journal, Volume 38, Number 4, August 2016.

[10] Ziyang Liu, Yichuang Cai,Yi Shan and Yi Chen, "Ranking Friendly Result Composition for XML Keyword

Search" in Springer International Publishing Switzerland 2015.

[11] Xudong Ling,Ning Wang, De Xu, Xiaoning Zeng , "A novel XML keyword query approach using entity

subtree" in Journal of Systems and Software Volume 83, Issue 6, June 2010, Pages 990-1003

[12] Khanh Nguyen, Jinli Cao, "Exploit Keyword Query Semantics and Structure of Data for Effective XML

Keyword Search" in Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

[13] Vagelis Hristidis, Yannis Papakostantinou, Andrey Balmin, 'Xkeyword: Keyword Proximity Search on

XML Graphs', in 1th International Conference on Data Engineering, 2002.

