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ABSTRACT

Lighthill considered the diffraction of normal shock wave past a small bend of angle . Srivastava and
Srivastava and Chopra extended the work of Lighthill to the case of diffraction of oblique shock waves
(Consisting of incident and reflected shock wave). Srivastava obtained the curvature of reflected diffracted
shock wave when the relative outflow behind reflected shock is sonic. In the present investigation a qualitative
estimate of curvature of the reflected diffracted shock wave is obtained when the relative outflow behind
reflected shock wave is subsonic.
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I. INTRODUCTION

Lighthill (1949) considered the diffraction of a normal shock wave past a bend of small angle 8. The analogous
problem of a plane shock wave hitting the wall obliquely together with the associated reflected shock has been
considered by Srivastava (1968) and Srivastava and Chopra (1970). Srivastava (1968) has developed the
mathematical theory of oblique shock wave diffraction when the relative outflow behind the reflected shock
wave before diffraction is subsonic and sonic. Srivastava and Chopra (1970) completed the theory when the
relative outflow behind the reflected shock before diffraction is supersonic. Srivastava (2016) gave the results
concerning curvature of the reflected diffracted shock when the relative outflow behind reflected shock before
diffraction is sonic. In the present paper we have obtained curvature results for the reflected diffracted shock
when the relative outflow behind reflected shock before diffraction is subsonic. Reference may be made to the
book by Srivastava (1994).

1. MATHEMATICAL FORMULATION

Let the velocity, pressure, density and sound speed ahead of the shock wave be denoted by 0, pg. 21,24, in the
intermediate region by gy, P4, 21, @4 and behind the reflected shock wave by g, P2, 22, @2. Let U denote the
velocity of the point of intersection of the incident and reflected shock, & the angle of bend, oy is the angle of
incidence and o, is the angle of reflection. The Rankine-Hugoniot equations across the incident and reflected

shock for » =1.4 (ybeing the ratio of specific heats) are given as follows (Srivastava 1995, 2003).

Across the incident shock
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Across the reflected shock
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Where T, =g, Sina,, G, =0, cos(a, +a,)

7 Py
P

U =Using,, a =
Also we have

! ! T

g,cosé’ =q,coscx,, 6O :a0+a2—5

Let the pressure, density, velocity and entropy behind the reflected diffracted shock be denoted by 4, pé; tﬂ
and S,. Following Lighthill (1949), by the use of small perturbation theory and conical field transformations, the

flow equations can be linearized and they yield a single second order differential equation in p, namely

2 2
x£+yg+1 x@+y@ :8_5)+8 E -(7)
OX oy OoX oy OX oy
where pzu, Xzﬂ’ yzi -(8)
a,0,0, at at
q2= gy {(1+u). v} -(9)

104|Page




International Journal of Advance Research in Science and Engineering
Vol. No.6, Issue No. 10, October 2017
TJARSE

www.ijarse.com ISSN 7319 - 8354
It would be necessary here to discuss about the axes. X,Y are the axes in which X axis is along the original wall

produce, Y is the axis normal to the leading edge of the wedge. In (x,y) axes, the origin and x axis lies on the

original wall produced and y axis normal to it. The origin with respect to X,y coordinates is at (_‘12, oj and the
a2

coordinates of the point of intersection of incident and reflected shock is [U — G 'OJ.
aZ

The characteristics of the differential equation (7) are tangents to the unit circle x? + y2 =1, the region of

disturbance will therefore be enclosed by arc of the unit circle X2 + y2 =1 reflected diffracted shock and the

wall.
Following Srivastava (1968) and Srivastava and Chopra (1970), the equation of the straight portion of the
reflected shock after diffraction is given by

X =k —ycot o, where kz% - (10)
2

The equation of the diffracted shock may therefore be written as
x=k—ycota, + f(y) -(12)
where f(y) is small.

From the equation (11), curvature x is given by

2 2
KZLC]XS:—SiI’ﬁazfﬂ(y) -(12)

b(@y)

Following Srivastava (1968) and Srivastava and Chopra (1970), on the reflected diffracted shock we have the

relation
P _[8, -A,G(y)] f"(y) -(13)
oy
where G(y) = (q2 sing, cosa, + &, y) and B,, and A; are constants.
Combining (12) and (13) we obtain
1 op

= sin®a, — - (14)
B,-AG(y) "oy
Equation (14) can be written as
K:—;Sifazﬁ-% - (15)
Bz - AzG(y) axl dy

On the diffracted shock we have the relation (Srivastava 1968)
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y = x|cosa, +sina, tanb], x= .
2

sina, - (16)
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K
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In (16) tan® = Z -1 ﬁ, K =1-x°
Z°+1
The relationship between Z and z; from Srivastava (1968) is
1|(bz+1\* (bz+1) 7
Z,=— + -(17)
2|\bz-1 bz -1

K'sina, + KOs, %
K'sina, — kK CoS t,

where b =(

From equation (17), we obtain

A el

T (i) "
Z, = X, +1y, and on the real axis Z, is replaced by X; .
From (16) we have
y=xC0Sa, +k'sina, Zi_l - (19)
Z°+1

In (19), Z is substituted in terms of z, (in terms of X, as on the real axis Y, =0, z; being equal to X, + iyl)
d

then we obtain A :
dx,

The values for the calculation are

Po _ 0, ¢,=3997, a,= 32.97° (obtained through calculation).

Py

These data produces v-g, =10.94699 <1 (subsonic)
aZ

Following Srivastava (1968)

W _(y _qPlra i) . 4005779~ B) . 2(~0.05767 - )
axl_(x1 1 {( 151698 )+ (-0.25%) (1-05x)

cos - (20)
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where ' = {tanl (a%ylj/(a%xiﬂxl =t= % =4 - (21)
and
(ay j/(ap ) B 0.16149-0.03072tan0 —0.02355tan” 0 + 0.01038tan> 0
M)\ /%) [0.73441-0.26559 tan? 6] 2[0.12908 + 0.04215tan 0 — 0.02592 tan’ 6
-(22)
87p is given by (20) and d—;, is given by (19) and so x (curvature) is known from (15). This gives the final
1 1

expression for curvature.

K (2% -1
From (16) we have tan6 =—-7—
Kk \Z°+1

!

K
where Z — ootan0 = — so from the relation (16)
K

/
. K

we have Yy = K(COSaersma —j
2 K

So y - ~=1
(x cosa +sina,x)

1
when Z > B , then we have

tan6 =~ 1_b2 =—cota,
x \L+Db
So from the relation (16)
y = x(cos e, +sina, tan )
We have Yy =0

or y - -=0
K COS @, +Sin a, ik

So finally z —>°O(Zl —1lie X _)1)’ (Kcosay+sin0£ ):1
2 2

1 y
d — , ) =0
o Z_>b(zl_>OO %) (kcosa, +sina,)

From (15) and (20) it could be seen that

K . . . o
—=0 at y - =1 ie at the intersection of unit circle and shock.
(xcosa, +sina,)
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y

x_ oo at
(xcosa, +sinea,)

. . . .. K
=0 ie at the wall and shock wave intersection. The variation of g between

y =0 to y
(xcosa, +sina,) (xcosa, +sina, )

U-—
20 =1 (sonic case) given by Srivastava (2016).

=1 is expected to be that as proposed in the case

a2
The point of inflexion in the curvature of the diffracted shock is given by when from (20)

D(x, —X,)—1=0 -(23)

1
or when X, = X, +5 -(24)

From the calculations we have
X, =0.60388 and D =0.52589
when these values of substituted in (24) we get

X, =2.505418

This means that at the point X, = 2.50548, there is a point of inflexion. So in the reflected diffracted shock

there is a point of inflexion. The curvature is infinite, then it passes through point of inflexion and finally it

becomes zero. This is a qualitative estimate of the curvature.

11l. CONCLUSION
K
The results for curvature distribution g for the sonic case by Srivastava (2016) and present results for subsonic

case are very important contribution on the subject and possibly first attempt in this direction. The results will be
useful in the area of aeronautics.
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