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ABSTRACT 

Lighthill considered the diffraction of normal shock wave past a small bend of angle . Srivastava and 

Srivastava and Chopra extended the work of Lighthill to the case of diffraction of oblique shock waves 

(Consisting of incident and reflected shock wave). Srivastava obtained the curvature of reflected diffracted 

shock wave when the relative outflow behind reflected shock is sonic. In the present investigation a qualitative 

estimate of curvature of the reflected diffracted shock wave is obtained when the relative outflow behind 

reflected shock wave is subsonic. 
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I. INTRODUCTION 

Lighthill (1949) considered the diffraction of a normal shock wave past a bend of small angle .  The analogous 

problem of a plane shock wave hitting the wall obliquely together with the associated reflected shock has been 

considered by Srivastava (1968) and Srivastava and Chopra (1970). Srivastava (1968) has developed the 

mathematical theory of oblique shock wave diffraction when the relative outflow behind the reflected shock 

wave before diffraction is subsonic and sonic.  Srivastava and Chopra (1970) completed the theory when the 

relative outflow behind the reflected shock before diffraction is supersonic. Srivastava (2016) gave the results 

concerning curvature of the reflected diffracted shock when the relative outflow behind reflected shock before 

diffraction is sonic. In the present paper we have obtained curvature results for the reflected diffracted shock 

when the relative outflow behind reflected shock before diffraction is subsonic. Reference may be made to the 

book by Srivastava (1994). 

 

II. MATHEMATICAL FORMULATION 

Let the velocity, pressure, density and sound speed ahead of the shock wave be denoted by  in the 

intermediate region by  and behind the reflected shock wave by  Let U denote the 

velocity of the point of intersection of the incident and reflected shock,  the angle of bend, 0 is the angle of 

incidence and 2 is the angle of reflection. The Rankine-Hugoniot equations across the incident and reflected 

shock for 4.1  ( being the ratio of specific heats) are given as follows (Srivastava 1995, 2003). 

Across the incident shock 



 

104 | P a g e  

 

 











0

22

2

0
01

sin
1sin

6

5




U

a
Uq       - (1) 

 











7
sin

6

5
2

0
0

22

01

a
Up         - (2) 

 













0

22

2

0

0
1

sin

5
1

6






U

a
       - (3) 

 

0

0
0

 



 p
a    

Across the reflected shock 
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Where  2011222 cos  ,sin   qqqq
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Let the pressure, density, velocity and entropy behind the reflected diffracted shock be denoted by  

and S2. Following Lighthill (1949), by the use of small perturbation theory and conical field transformations, the 

flow equations can be linearized and they yield a single second order differential equation in p, namely 
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It would be necessary here to discuss about the axes. X,Y are the axes in which X axis is along the original wall 

produce, Y is the axis normal to the leading edge of the wedge. In (x,y) axes, the origin and x axis lies on the 

original wall produced and y axis normal to it. The origin with respect to x,y coordinates is at 





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
 0 ,

2
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q  and the 

coordinates of the point of intersection of incident and reflected shock is 
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qU . 

The characteristics of the differential equation (7) are tangents to the unit circle ,122  yx  the region of 

disturbance will therefore be enclosed by arc of the unit circle ,122  yx  reflected diffracted shock and the 

wall. 

Following Srivastava (1968) and Srivastava and Chopra (1970), the equation of the straight portion of the 

reflected shock after diffraction is given by 

2cotykx   where 
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The equation of the diffracted shock may therefore be written as 

 yfykx  2cot        - (11) 

where  yf  is small. 

From the equation (11), curvature   is given by 
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Following Srivastava (1968) and Srivastava and Chopra (1970), on the reflected diffracted shock we have the 

relation 
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where    yaqyG 2222 cossin    and B2, and A2 are constants.   

 Combining (12) and (13) we obtain 
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Equation (14) can be written as 
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On the diffracted shock we have the relation (Srivastava 1968) 
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The relationship between Z and  from Srivastava (1968) is 
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From equation (17), we obtain  
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111 iyxz   and on the real axis 1z is replaced by 1x . 

From (16) we have 
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In (19), Z is substituted in terms of  1z (in terms of 1x  as on the real axis 11  ,0 zy   being equal to 11 iyx   

then we obtain 

1dx

dy
. 

The values for the calculation are 
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Following Srivastava (1968) 
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is given by (19) and so   (curvature) is known from (15). This gives the final 

expression for curvature. 
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From (15) and (20) it could be seen that  
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The point of inflexion in the curvature of the diffracted shock is given by when from (20) 
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From the calculations we have 

 60388.00 x  and 52589.0D   

when these values of substituted in (24) we get 

 505418.21 x  

This means that at the point ,50548.21 x  there is a point of inflexion. So in the reflected diffracted shock 

there is a point of inflexion. The curvature is infinite, then it passes through point of inflexion and finally it 

becomes zero. This is a qualitative estimate of the curvature. 

 

III. CONCLUSION 

The results for curvature distribution 



 for the sonic case by Srivastava (2016) and present results for subsonic 

case are very important contribution on the subject and possibly first attempt in this direction. The results will be 

useful in the area of aeronautics. 
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