Vol. No.6, Issue No. 09, September 2017 www.ijarse.com

Friction Stir Welding of Polymer: A Review

Parth Sas, Sushama Kadam, Yamini Chavhan, Minal Parate, Omkar Kotulkar, Vijaykumar S. Jatti

Department of Mechanical Engineering, D Y Patil COE, Akurdi, SPPU, Pune India

ABSTRACT

Friction stir welding (FSW) is a solid-state joining process, invented at TWI Cambridge, involves joining or welding of 2 materials without using any filler material. This process has developed remarkably during the last 2 decades. FSW benefits over conventional welding techniques, along with growing industrial demands due to the absence of bulky filler material leading to lightweight designs. FSW found its way into becoming one of the fascinating engineering subjects of today. This method is used for welding similar and dissimilar materials together. Due to increase in polymeric material's consumption in the industry, the possibility of increasing polymeric material welding received a considerable share of interest. There is very limited research done on po lymeric welding with FSW technique. This article reviews previous studies which were focused on welding parameters for different polymeric materials and are then analyzed. The main focus of this article is on welding polymers using FSW technique, welding strength, tool geometry and to observe and analyze the conditions under which optimum results of FSW process is obtained.

Keywords: Friction Stir Welding (FSW), Tool Geometry and Strength, Workpiece Material, Weld Defects, Polymer

I. INTRODUCTION

FSW was originally used to weld materials that are difficult to weld with traditional methods. Subsequently, the advantages of this method and the increase in industrial demand for lightweight design structures lead this method into welding polymeric materials. The FSW technique is generally based on heat due to friction between the welding tool, base material, and material deformation. The main advantage of thermoplastic composites may lie in their potential for rapid and low cost production. The surface properties of thermoplastic suddenly increase reinforcing fillers. FSW is the process in which conversion of mechanical energy into thermal energy is used to join materials. The joining takes place through the movement of a rotating shoulder tool with profile pin plunged into the joint line between 2 pieces of sheet or metal plate. In the FSW method, it is found by Paneerselvam that the majority of voids occur in the bulk of the weld, due to the lack of sufficient heat on the retracting side [2, 4]. It is also noted that welding with low welding speed provides adequate time for stirring and homogenization of the parent material [19]. The rotational speeds outside of the "weldable condition" produced the lowest mechanical properties for 4 - mmHDPE in compared to the obtained results inside the "weldable condition" range, [4, 20].

Vol. No.6, Issue No. 09, September 2017 www.ijarse.com

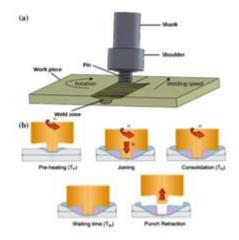


Fig 1: Schematic of a conventional FSW process [18]

This article reviews the various studies and research conducted on the topic of FSW on different polymeric materials such as Acrylonitrile Butadiene (ABS), High Density Polyethylene (HDPE), Nylon 6, P olymethyl methacrylate (PMMA), Polypropylene, Ultra High Molecular Weight Polyethylene (UHMWPE)and observes the effects of varying input parameters such as tool geometry, tool material, rotation speed, traversing speed, and using external and auxiliary heat sources such as a hot shoe in order to optimize various mechanical properties such as the hardness, tensile strength and relative tensile strength with respect to the base material. This research paper consists of different headings like workpiece materials, tool profile, tool geometry and materials; covering the various parameters which affect the strength of weld. It further encapsulates the studies and research papers re viewed in a tabular form and ends with the summary along with the future scope of research and innovations in this particular field as seen by the limited view of the authors.

II. WORKPIECE MATERIAL

The FSW require very few process parameters (rotational speed, welding speed, Tool dimension, and plunge depth) and each parameter has vital roles in heat Generation and stirring. The optimization of parameters is significant to produce an Acceptable joint strength. Due to different rheological and physical differences among polymers, they were welded at diverse FSW parameters [21]; for this experiment nylon sheet having dimension 105 x 76 x 6 mm have been used. Nylon-6 is one of the most widely used engineering thermoplastics. This Polymer is an excellent replacement for a wide range of different materials like metals and rubber due to its toughness, lighter weight, low coefficient of friction and abrasive resistance properties. It has limitations in usage because of high water/moisture absorption characteristics and poor chemical resistance to strong acids and bases. Dashatan et al. [13] showed the Feasibility of dissimilar polymer joining by FSW of PMMA and ABS. Both of these materials have pattern of crystalline structure and approximate the same glass transition temperature [17]; The polycarbonate sheets were obtained from local market in the form of plates having 1000 mm length, 1000 mm width and a 10mm thickness. The plate is then cut into rectangular plates having 200 mm length and 100mm width. Polycarbonate is naturally

Vol. No.6, Issue No. 09, September 2017

www.ijarse.com

transparent, with the ability to transmit light nearly that of glass. It has high strength, toughness, heat resistance, and excellent dimensional and color stability. Flame retardants can be added to polycarbonate without significant loss of properties [2]; The samples used in this work consisted of two polypropylene plates with dimensions of 220 x 100 x 10 mm was prepared to fabricate FSW joints [13]; Nylon is well known engineering material used in a wide range of applications due to its excellent combination of good mechanical properties and an easy processing ability, the work piece material is this experiment is taken of dimensions 220 x 95 x 10 mm. Sadeghian and Givi [6]; ABS is a triple copolymer thermoplastic that has a unique structure with polymerization point of 75°C and a highest glass transition temperature of about 80°C. ABS acts as an amorphous thermoplastic and has low moisture absorption content that prevents from growing up of micro bio-organs. Main applications of ABS sheet are in automobile industries due to its capabilities in impact energy absorption, and dimensional stability. In addition, good wear resistance in room temperature make ABS as a suitable choice for home appliances [8]; Butt welds were produced between ABS plates of 300x80x6(mm3). ABS is a light material with low glass transition temperature, which has a broad spectrum of applications, such as in the chemical and automobile industries [7]; Compression-molded ABS sheets chosen for this paper for several reasons. First, ABS is a very common commodity thermoplastic with a variety of applications. Second, it is readily joined by every common joining process. Third, although ABS is slightly hygroscopic, it does not need to dry prior to processing, thus eliminating the need for extra moisture consideration during testing shows some basic mechanical properties of these sheets [5]; Polycarbonate sheets having 3mm thickness, 20 mm width and 90 mm length have been cut from commercial plates. Polycarbonate is an amorphous thermoplastic polymer having tensile strength 58 – 62 MPa. A glass transition temperature 147 °C and melting temperature about 155 °C [14]; we are using two dissimilar working material having different thickness (1) Polyethylene (2) polypropylene.

III. TOOL MATERIAL DESIGN AND GEOMETRY

Since the tool plays a primordial role in this technique, a number of modifications to obtain appropriate FSW tool solutions for welding polymers were required. Given that polymers behave differently than metallic materials during FSW, new tool developments are needed to minimize the defects in order to achieve sound welds. In FSW, pin and shoulder geometry of the tool profoundly affect the weld quality. Considering the importance of tool geometry, wide research on tool design has also been performed. Different types of tool Geometry are shown in the fig. below

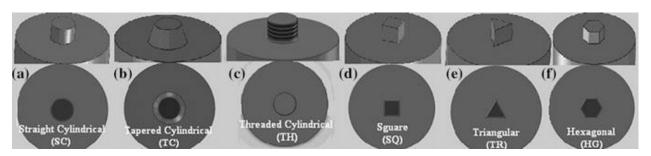


Fig. 2: Various types of Pin Geometry [18]

Sadeghian and Givi [6] They used a specially designed concave shoulder with straight cylindrical and conical pins. This particular design of shoulder was made to restrict the generated heat of friction within the weld area. A

Vol. No.6, Issue No. 09, September 2017

www.ijarse.com

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

stainless steel blade was also placed on the upper surface of the ABS sheets to prevent the top of the weld from undercutting thus producing a good surface finish. The tensile strength of specimens showed effective results as the highest weld efficiency was pegged at 101 and 99% in the conical and the cylindrical pinned tools, respectively. Oliveira et al. joined thin PMMA sheets using refill friction stir spot welding. This process is efficient in a way that a key-hole will be filled by a non-consumable FSW tool. Mendes et al. [8] In this experiment the FSW tool consisting of a stationary shoulder and a conical threaded pin. A long stationary shoulder is design to allow heating In front of and behind the pin although in this set on test no external heating was applied. External shoulder dimensions are 177 x 25 mm.[17]from studied tool geometry using rotating shoulder FSW tool has resulted in spinning out of the polymeric material and building it around the shoulder [13] showed the effect of inertia force on shoulder, furthermore shoulder could easily insert molten area without applying enough forging pressure .to avoid the problem equipped with an additional plate was designed and employed [3], this studied has four different FSW tool pin profile such as square pin, taper pin, triangular pin and threaded pin with cylindrical shank. From this investigation threaded tool pin profile created good welded region and more hardness without bothering of welding from investigation speed, speed rotation parameters were depend on pin profile [14]showed the tool material used for welding is hot shoe static shoulder with aluminum coated with polytetrafluoroethylene or Teflon on contacting surface area. In his second iteration he simply removed hot shoe and worked on static shoulder made by Teflon with a highly conductive sleeve around rotating pin. This prevents injection of the soft material inside the shoulder and due to its ability to preheat the areas around the pin in advance.

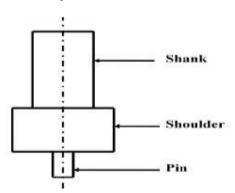


Fig. 3: Various nomenclatures of FSW tool and Pin Geometry [2]

IV. OPTIMIZATION PARAMETERS

Optimization is a general design techniques which is used in various disciplines of engineering in order to maximize a given constraint or parameter. Optimization is overwhelmingly used in engineering analysis of data points, for e.g. Taguchi method, ANOVA analysis & many more are generally used to improve the quality of manufactured goods & more recently applied to engineering biotechnology etc.

Vol. No.6, Issue No. 09, September 2017 www.ijarse.com

Table 1 Optimization Parameters

	1a	able 1 Optimization Parameters		
Sr. No	Optimization method	Input Parameter	Output Par	amata
110	Optimization method	mput rarameter	We deter	
1	Taguchi design method is the study the	• Elastic modulus= 1108 – 1339	factors to the final	ne ten weld
	effect of processing parameter on yield	MPa	ANOVA diameter ratio, rot	
	strength of welded sheet.	• Tensile strength= 39.35 – 42.87	speed etc	
	ANOVA Analysis determines the main effects contribution of factors on the response and defining an Empirical equation between the factors and the response mathematically calculated of the ANOVA is carried out by Minitab software version 16.	 MPa Ultimate Elongation= 2.92 – 3.14 % Notched Izod impact strength at 23°C= 30 – 450 J/m 	different w 23.84 to	
2	This experiment study Taguchi method	• FSW tool pin profile – square,	Based weldir • speed	g spe
	defines the quality of products in terms	triangular, threaded & tapered.	param only th	eters v e tool
	of the loss imported by the product to the society form the time the product shipped to the customer. In the experimental work, orthogonal L'16 array was utilized to identify the optimized parameter.	 Speed mm/min – 30,40,50& 60. Rotation speed – 1500, 1750, 2000 & 2250. 	Differ weldir neglig	g & r
3	In this experiment using ANOVA	• Dwell Time (sec) – 10, 20 & 30.	As illu rate, d • rotatio speed	well ti nal
	method in order to investigate friction	• Plunge Rate (mm/min) - 8, 16 &	param values as calc	ulated
	stir welding parameters effect on the	24.	experi are lar the F y	ger th
	weld strength.	• Rotational speed (rpm) – 500, 800	statisti plunge rate is	found
	Lap shear test were carried out to find	& 1250.	effecti streng Then o	h. well t
	the weld strength as the mechanical		rotatio be effecti	_
	property of the welded specimens.		respec • From sta illustrate th increa dwell the tool pl	tively tistica at we sed by ime v
			weld s	
4	DSC tests (Differential Scanning	Tensile test were performed on a	The tensile	

Vol. No.6, Issue No. 09, September 2017

www.ijarse.com

Calorimetry) was performed in order to

determine the crystallinity were

performed on a Perkin-Elmer
differential scanning calorimeter at a heating rate 10K/min in temperature range 350-500K.

ZWICK Z020 universal tensile tester

using 20*15mm specimen at tensile

rate of 10mm/min.

Heat rate 10K/min temperature range of 350-500K.

11.5MPa, which to about 50% of ori. The molter mate largest distance f can be found at the seam border.

Table 2Literature Review

Revi	ew				
Sr.					
No.	Aim	Methodology	Fixed parameter	Observation	
1	Study of mechanical and microstructure properties on nylon 6	 Take nylon 6 sheet for experimentation dimension (105* 75*6mm) Was carried out in CNC machine with change in rotational speed and feed rate 	Type of tool- Cylindrical with threaded pin Hardness - 62HRC Shoulder dia - 16mm Pin dia -8mm Pin length - 5.8mm Rotational speed- 600,800,1000,120 0 Feed rate- 18,21,24,23mm/ min Angle-0°	Lower rotation a rate- generate less fri insufficient to o Mechanical pro a. Different tran i. Min yield stre ii. Min UTS 4.5	pertusve engt -13° on- otat
2	FSW of dissimilar of PMMA and ABS sheet	 PMMA and ABS sheet (5*25.4*100mm) to produced welding using vertical milling machine. ANOVA analysis 	 Type of tool Cylindrical with threaded pin Shoulder dia - 20mm Pin dia -6mm Rotational speed- 500,800,1250 Plunge rate- 8, 16, 24. Dwell time- 10, 20, 30. 	1.Plunge rate af of weld 2. Extreme rota extra heating of tool a reduced strength of welce	fect tion and
3	Study of polycarbonet sheet for tensile properties and microstructure	 Using polycarbonet sheet (1000*1000*10mm) Using vertical milling machine for operation Hardness test- Vickers hardness test 	 Type of tool Cylindrical with threaded pin Shoulder dia - 20mm Pin dia -7mm Pin length -9mm 	 Joint efficiency Maximum stren speed- 1220rpm. Feed rate- 40. Angle- 1. 	

Surface hardness-emery

Tilt angle affect the l

Pitch thread-1mm •

Vol. No.6, Issue No. 09, September 2017 www.ijarse.com

ww.ijarse.com			ISSN (O) 23 ISSN (P) 23	
		paper	Pin material- • H13steel Rotational speed- • 1000,1220, 1850rpm Feed rate- • 20,40mm/min • Angle-1 ⁰ , 3 ⁰ .	
4	Effect and defects of PP Plate for different parameter of FSW	Sample are hold on CNC vertical machine of centre for welding (220*110*10mm) Hardness test- Rockwell test	 Type of tool Cylindrical with threaded pin Shoulder dia - 24mm a) Pin dia -6mm Pin length -10mm Pin material- Mild steel Rotational speed- 1500-2250. d) 	Square pin- good n affect to strength Triangular pin- goo
5	Microscopic analysis of morphology of seams in FSW of PP	Using vertical milling machine PP sheet (10mm thickness) Strenght-25.6mpa Using optical and electron microscopic technique	Cutting depth 6mm Feed rate 60mm/min Rotational speed- 2000 4. Type of tool- Cylindrical with threaded pin	Super molecular stru Transition zon (outer perimeter of t Cylindric or distorte PP softer in HAZ re better joint efficiency
6	To study the effect of joint formation by rotation of the pin pro file.	To take a Nylon 6 base workpeice at predetermined conditions, select a non-consumable left handed tool (threaded) made of steel and provide it with a fixed feed rate and rpm and thus carry out the welding of the workpeice. We	Nylon 6 Properties: a) UTS= 73.44 MPa Shore D Hardness= b) 70 Izod Impact strength= c) 180 kN/m Charpy Impact d) Strength= 296 .29 6k N/ m Dimension of	Clockwise a) UTS= 14.4 MI b) Shore D Hardness
		then study the joint formation and compare the results for Clockwise and Anti Clockwise Rotations from using ASTM standards.	 Workpiece= 220*95*10 mm Temperature= 30 degree Celsius Rotation speed=1000rpm Feed Rate= 10mm/min 	b) Shore D Ha dnes

Vol. No.6, Issue No. 09, September 2017

			10011 (1) 101	
			• FSW tool properties: Pitch = 1mm&Pin	Rotation gives bette quality for left
			 length= 10mm Nominal dia= 6mm 	handed tool.
			• Shoulder dia= 24mm	
7	Experime ntal Optimization of the Mechanical Properties of Friction Stir Welded Acrylonitrile Butadiene Styrene	In this research, the core of weldment free from top and root of weld defects is used. Based on the experiences, two types of FSW tools are selected: • Cylindrical shoulder with a	Elastic modulus= 1108 - 1339 MPa Tensile strength= 39.35 - 42.87 MPa Ultimate Elongation= 2.92 - 3.14 % Notched Izod impact strength at 23°C= 30 - 450 J/m Coefficient of friction (with Stee 1)=0 .21	Maximum Tensile side different work-piece s vari 23.84 to 41 95M We determine the contactors to the tensile strem weld from the ANOVA Analys diameter
	Sheets by varying several input parameters such like tool geometry, diameter ratio etc.	cylindrical pin and a conical pin. FSW tool is inserted in a universal FRITZ WERNER milling machine where welding is to be carried out. We thus conduct the experiment and study the effect of various parameters like tool geometry, tilt angle, diameter ratio on the Mechanical Properties and find the optimum value to maximize the weld strength.	_ 0.28	ratio, rotational s
8	experimental	In the experiment Compression-	Tensile • strength=54MPa	• From the above exp conclude
	on mechanical properties of friction	molded ABS sheets produced by "Aida Plastic" are used as the base	Tensile elongation= • 25% Flexural strength= • 72MPa	that the Tensile Stra from 1.99 – 32.62 MPa with Re Strength
	welded ABS sheets. In this research paper the	material for the welding. The welding is carried out by a rotating pin made of CK45 steel	Rockwell hardness= 112 R scale Heat distortion temperature = 91 Celsius	varying from 5.4 – the Base Tensile Strength of

Vol. No.6, Issue No. 09, September 2017

			ISSN (P) 2319 - 8340
Rotational		having a	
of the trav elin g speed	pin, and	hot shoe is made from common structural steel and an electric	 Density= 1.04 g/cc Rotational speed (rpm)= 800 - 1600
temperature the beginning of welding procedure	at the	Heater placed on it. Then the cross section of the welded is cut and observed and tested to study the	Travel speed • (mm/min)= 20 - 80 Temperature (C)= 50 - • 100 Celsius
considered varying param	as eters.	relation between the various physical processes.	

Vol. No.6, Issue No. 09, September 2017

www.ijarse.com

IJARSE ISSN (O) 2319 - 8354

www.ijarse.com			ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346		
9	In this paper, a newly	In this investigation, 100 × 80 × 5 mm Compression-molded	• Rotational speed of tool= 400 -800	• Geo	Simple metry, sile St
	designed tool with	ABS sheets were used in order	rpm • Translational speed of tool=20 -	15.5 is 4	58 MPa 5.636% rigth o
	touches upper and	Butt-joint welding. The	60mm/min • Shape of pin- Simple	base	
	beneath	T300 series. Two	and Convex	• Geo	netry,
	surface of the	washers were used		MP 60.6	sile Strawhic 33% of
	workpiece has been used in order to weld	bearing and each shoulder for simple			ngth o
	acrylonitrile butadiene	positioning the bearing in the shoulder and to prevent			
	styrene (ABS) sheets.	penetration of outpouring melted material into			
		the bearing. In present research the pin geometry was chosen			
		in two different shapes; convex			
		and simple and the welding of the workpiece is			
		conducted and the correlations between effect of			
		rotational, translational speed,			
		fracture mechanics on the tensile strength of the weld.			
10	Effect of friction stir	• In this Study, the welds were carried	• Density (g/cc)= 1.04 • Tensile strength(MPa)=	The Te Efficient	ncy is 1
	welding parameters	out in a FSW machine, • Using a tool with a	40.5	speed o	II .
	on morphology and	stationary shoulder and no external	• Strain at break(%)= 50		t is fea
	strength of acrylonitrile butadiene	heating system. The welding parameters	Glass transitionTemperature(C)= 105	v	oduce velds v externa
	styrene plate welds.	studied were and the. The major	 Tool rotational speed varies between 	Г	pol ro
	The aim of this study	novelty is to study the influence of	1000 and 1500rpm • Feed speed which varied		alues a
	is to swaming the	the parameter axial force	between 50 and 200		resho

polymers. Butt welds were

on FSW of

produced

is to examine the

effect of main friction

mm/min

speed hi 1250 (rp force hi

Vol. No.6, Issue No. 09, September 2017

img	#
	IJARSE
ISSN (C	0) 2319 - 8354
ISSN (P	2) 2319 - 8346

om		ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346		
stir welding (FSW) parameters on the quality of acrylonitrile butadiene styrene (ABS) plate welds.	between ABS plates. A FSW tool consisting of a stationary shoulder and a conical threaded pin and a long stationary shoulder was designed in order to allow heating in front of and behind the pin. Optical transmission microscopic analyses were conducted using an Olympus BH transmittance microscope. • For mechanical tests a minimum of five tensile specimens were removed from each weld, transversely to the welding direction, and tested in a 10 (KN) universal testing machine, SHIMADZU • AG-X, at room temperature, according to the ASTM.	 Axial force ranging from 0.75 to 4 kN. Dimensions of ABS plates of 300*80*6 mm 	to fr T ge fo pe ad m T co m th ca re zo T au w th w th au w th	5 (KN produce of cool rocated replaying the production of the production of the produce of the p

Vol. No.6, Issue No. 09, September 2017

www.ijarse.com

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

www.ijarse.com			ISSN (P) 2319 - 8346	
11	Preliminary study on the feasibility of	• In this preliminary study, Three-millimeter PMMA cast plaques	of PMMA FSW joints	Joint succ prod the follo Rota
	friction spot welding in PMMA. In this	(Plexiglas GS-Evonik) were cut to produce 25×100 mm length welding	is possible to observe the presence of few voids along the weld seam.	of 50 weld time joini press
	work the feasibility of	specimens. When welding	Although the mechanisms of void	and of 3.
	friction spot welding	thermoplastics by FSW, a higher	formation in	resu PMI cast
	of thermoplastics was	amount of thermal energy is required	FSW of thermoplastics are still under	shov curre spot
	investigated on	to achieve the desired plasticizing	investigation, it is believed that these	com othe weld
	Polymethyl	volume, due to the low thermal	defects can be related to thermal shrinkage, entrapped air	tech avai
	Methacrylate plates.	conductivity of polymers. For this	or some physical–chemical	
	Preliminary results have shown that the weld strength is comparable to other available welding, techniques, while joining times are equal or shorter.	reason heat losses should be reduced. TiAl6V4 titanium alloy was selected as the tool material due its low thermal conductivity. The dimensions and geometries of the tool comprised a threaded sleeve, pin and a clamping ring of φ 9, 6 and 14.5 mm, respectively.	structural changes, such as structural water evolution.	
12	2 To analyze the effect	Take new developed tool consisted	Type of tool:	•
	of the welding	of static shoulder made by Teflon	Static shoulder with rotating pin	
	parameters on the	with highly conductive bronze	1. Pin geometry: flat surface	
	weld strength with the	sleeve around the 6mm rotating	2. Pin diameter: 6mm	
	new developed stationary FSW tool	pin. A position control method was	3. Pin length: 2.4-2.8mm 4. Rotational speed: 1500rpm	•
			918 Page	

Vol. No.6, Issue No. 09, September 2017

No. 09 m	9 , September 2017		JARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346	
		used to weld the plates together in a	5. Traverse speed: 100 mm/min	
		lap joint configuration.		•
		Tensile test were performed for the specimen with different welding parameter in order to qualify the new tool effect on the weld strength.		
13	To study	Multiwalled carbon Nano tubes	HDPE:	Micrevol joint at d
	microstructure &	(MWCNTs)	Density:0.96 g/cm ³	proc para been obse
	tensile properties	Were introduced in joints of HDPE	Melting point 130-137 ° C	field scan elect
	of dissimilar	joints.	Tensile strength: 22.5MPa	micr (FES
	submerged friction	Non consuming rotating tool		analy obse new
	stir welds between	including a special shoulder & pin	ABS:	geon previous contr form
	HDPE& ABS sheets	slowly pumped into the work piece	Density:1.05 g/cm ³ Melting point: 217-237	inter com
		until the shoulder touches the upper	° C Tensile strength:	
		surface of the work piece, then pin	39.6MPa Parent HDPE	
		moved along weld line & the shoulder always contacts with the work piece upper surface. The softened materials moved with the rotation & translation of the tool from the front to the back of pin.	strength:65.3%	

Vol. No.6, Issue No. 09, September 2017

www.ijarse.com

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

		_				
14	To study the	•	Main component of tool is shoulder	Tool specification:	The mechanical strength of friction stir	[12]
				-	welding spot connections is	[12]
	optimization of		and pin. During welding the pin	Shoulder diameter: 11mm	mainly influenced	
	friction stir welding of	•	travels in	Pin diameter: 5mm	by the plunge rate,	
	werding of		the material, while		Rotational speed and	
	thermoplastics		shoulders rub	Pin length: 3-4mm	waiting time.	
			along the surface.	Dimensions of Polycarbonate sheet:	Particularly the maximum lap shear strength	
			arong the surface.	SHECC.	was obtained for the friction	
		•	Heat is generated by the tool	3×20×90mm	stir welding.	
			shoulder rubbing on the surface and	Tensile strength : 58-62 MPa	The joint with the highest strength exhibits a	
			by the pin mixing the	Tensite strength : 30-02 Wil a	larger welded area, whose	
			material	Glass transition temperature:	width r=1.5mm	
			below the shoulder. The mixing action permits	147° C.		
		•	the	Melting temperature: 155° C		
			material to be made without			
			any			
			melting of the material. Samples have to join with		A tensile strength of 72%	[17
15	To investigate the	•	single	Rotational speed:	was achieved in]
	.11 .1.774		pass under rotational speed	0.00 10.00		
	weld ability of UHMW-		and	960-1960rpm	non-preheated welds. A tensile strength of parent	
	polyethylene		transverse speeds.	Transverse speed:	material was	
	i. Cui ali an ali n		This method is carried out at		achieved approximately at	
	via friction stir	•	room temperature by pre heating	10-20mm/min Tensile test, durometer	an optimum value of 89% by preheating at	
	welding method		the	hardness test, an	50° C	
			bottom of plastic sample	optical microstructure		
			with metal molding.	analysis.		
		•]	It enables a homogeneous heat			
			distribution by			
			approximating the plastic material to fusing			
			point in			
			short time Hence, result will			
			be supreme characteristic of			
			welded			
			join.			

V. SUMMARY

From the above review of the following research papers on investigating the effects of various parameters on the strength of FSW process performed on a wide variety of thermoplastics, it is observed that:

- 1. Welding with low welding speed provides an adequate time for stirring and homogenization of the parent materials which results in stronger welds.
- 2. One of the most important properties required for a proper weld is good surface quality, i.e. the more similar the weld is to the parent material, more closely it retains the characteristics of the parent material.

Vol. No.6, Issue No. 09, September 2017

www.ijarse.com

- 3. In the FSW process, it was found that the majority of the voids that occur in the bulk of the weld are caused due to the lack of sufficient heat on the retracting side. As a result, an effective tool for FSW polymeric material, denominated as a 'hot shoe' has been developed, which consists of a static shoulder to keep the mixing mater ial during the welding process contained and an inbuilt heating system which maintains the appropriate temperature at the instantaneous site of weld.
- 4. High travel speeds of FSW tool or the high feed rate decreases of tensile strength of the bulk of the welded portion and also leads to a poor mixing of the base materials which were meant to be welded together. Also, the high travel speed or feed rate prevents the hot shoe and rotating pin to heat the weld area for a longer period of time thus reducing its weld strength.

VI. FUTURE SCOPE

The technology of Friction Stir Welding is still in its nascent stage, there's a lot more to be explored and there is enormous scope for improvement regarding the efficiency of the process, to try out various different polymer materials, subjected to different environmental conditions. Regarding the current review paper, it can be concluded that Friction Stir Welding has the ability to outperform and replace the conventional welding methods due to the ability of FSW to carry out welding without using any high density filler material, hence resulting in lightweight welds, also the ease by which FSW process is capable of welding a wide variety of metals and thermoplastics together. This versatile nature of the FSW process is what gives it a cutting edge against the conventional welding and joining techniques which are often more bulky and expensive.

Various parameters such as rotational speed of the tool, configuration of tool geometry, analysis of tensile strength of the weld as a function of various input parameters and its optimizations need to be studied and several constraints in order to increase the productivity and efficiency of the weld need to be identified. There need to be more studies focused on carrying out FSW processes on various polymers under different set of environmental conditions to find out the mechanical properties and behavior of the welds relative to the base materials.

REFERENCES

- [1] Mustafa Kemal Bilici, Application of Taguchi approach to optimize friction stir spot welding parameters of polypropylene. Journal of Materials and Design 35 (2012).
- [2] K. Panneerselvam1, K. Lenin, Effects and defects of the polypropylene plate for different parameters in friction stir welding process. International Journal of Research in Engineering and Technology.
- [3] Panneerselvam K, Lenin K (2014) Joining of Nylon 6 plate by friction stir welding process using threaded pin profile.
- [4] S. Eslami, P. J. Tavares, P.M.G.P Moreira (2016); Friction Stir welding tooling for polymers: reviews and prospects. IntJ Adv Manuf Technol
- [5] Paoletti A, Lambiase F, Di Ilio A (2016) Analysis of forces and temperatures in friction spot stir welding of thermoplastic polymers. Int J AdvManufTechnol 83.
- [6] Sadeghian N, Givi MKB (2015) Experimental optimization of the mechanical properties of friction stir welded Acrylonitrile Butadiene Styrene sheets. Mater Des 67.
- [7] Bagheri A, Azdast T, Doniavi A (2013) an experimental study on mechanical properties of friction stir welded ABS sheets. Mater Des 43.

Vol. No.6, Issue No. 09, September 2017

www.ijarse.com

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

- [8] Mendes N, A. Loureiro, C. Martins, P. Neto, J. N. Pires (2014) Effect of friction stir welding parameters on morphology and strength of acrylonitrile butadiene styrene plate welds. Mater Des 58.
- [9] Oliveira PHF, S.T. Amancio-Filho, J.F. dos Santos, E.Hage Jr. (2010) Preliminary study on the feasibility of friction spot welding in PMMA. Mater Lett 64(19)
- [10] Pirizadeh M, Taher Azdast, S.R. Ahmadi, S.M. Shishavan, A. Bagheri (2014) Friction stir welding of thermoplastics using a newly designed tool. Mater Des 54.
- [11] Gao J, Chao Li, Unisha Shilpakar, Yifu Shen (2014) Submerged friction stir weld of polyethylene sheets. J ApplPolymSci 131
- [12] Paoletti A, Lambiase F, Di Ilio A (2015) Optimization of friction stir welding of thermoplastics. Procedia CIRP33.
- [13] Dashatan SH, Taher Azdast, S.R. Ahmedi, Arvin Bagheri (2013) Friction stir spot welding of dissimilar polymethyl methacrylate and acrylonitrile butadiene styrene sheets. Mater Des 45.
- [14] Eslami S, Paulo J. Tavares, P.M.G.P. Moreira (2015) Effect of friction stir welding parameters with newly developed tool for lap joint of dissimilar polymers. Procedia Eng 114.
- [15] Vijendra B, Sharma A (2015) Induction heated tool assisted friction-stir welding (i-FSW): a novel hybrid process for joining of thermoplastics. J Manuf Process 20.
- [16] Kiss Z, Czigany T (2012) Microscopic analysis of the morphology of seams in friction stir welded polypropylene. Express Polym Lett 6(1).
- [17] Mostafa Shazly1, M.M.Z Ahmed, Mohamed El-Raey, Friction stir welding of polycarbonate sheets; Researchgate Publications
- [18] Adeel Zafar, M. Awang and Sajjad Raza Khan, Friction Stir Welding of Polymers: An Overview.
- [19] Husan Im (2015) mechanical properties of FSW polyamide sheets. International journal of mechanical and materials engineering.
- [20] AdbelGwad, EF, ABM Omar, E.A.H Radwon (2015) load ability of friction stir welded joints of high density polyethylene.
- [21] N. Ethiraj, T. Sivabalan, c. Vijayaraghavan, shubhammourya.Friction stir welding of nylon -6: effect of process parameters on mechanical and microstructural properties.