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ABSTRACT 

A narrow window on a very broad field of applications and areas that are opening up and directly fueled by the  

efforts and advances in the computational nanotechnology based investigations of CNTs. Our paper is focused 

on the nanomechanics and various properties of nanotubes like thermal properties of CNTs and CNTs in 

polymer composite materials; chemical reactivity or functionalization of pristine or deformed nanotubes; gas 

physisorption, diffusion, and storage devices through CNTs; polymer translocation and diffusion in CNT 

nanochannels for sequencing or drug delivery applications, molecular electronic device components through 

nanotube heterojunctions, and nanosensors for miniscule amounts of gas and biochemical detection 

applications, etc. The design of the gears is based on the analogous chemical reactions that are known to occur 

in bulk phase chemistry. Computational modeling and simulation is useful to investigate the optimal structural, 

material, and operating conditions 
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I. INTRODUCTION  

The science and technology of nanoscale materials, devices, and their applications in functionally graded 

materials, molecular electronics, nano computers, sensors, actuators, and molecular machines form the realm of 

nanotechnology. The prefix “nano” corresponds to a basic unit on a length scale, meaning 10-9 meters, which is a 

hundred to a thousand times smaller than a typical biological cell or bacterium. At few nanometer length scale 

the devices and systems sizes begin to reach the limit of 10 to 100s of atoms, where even new physical and 

chemical effects are observed and form the basis for the next generation of cutting edge products based on the 

ultimate miniaturization where extended atomic or molecular structures form the basic building blocks. 

The real progress in nanotechnology, however, has also been spurred by the discovery of atomically precise 

nanoscale materials such as fullerenes in the mid-1980s and carbon nanotubes in the early 1990s. CNTs, as 

described in, can be thought of as sheets of carbon rolled up atoms into a tubular structure such that atoms at the 

seams are connected in a flawless manner according to rules of graphitic (sp2) type chemical bonding. A single 

sheet of carbon atoms rolled up into a tubular structure is called a Single Wall Carbon Nanotube (SWNT), and a 

rolled up stack of sheets results in Multiwall Carbon Nanotubes (MWNTs). Since the discovery of MWNTs in 

1991 by Iijima [1], and subsequent synthesis of SWNTs by Iijima [2] and Bethune [3], there are numerous 

experimental and theoretical studies of their electronic, chemical, and mechanical properties [4,5]. CNTs with 

very good mechanical strength/stiffness and elasticity characteristics, electronic properties ranging from 

semiconductors to metals, high electronic sensitivity to chemical adsorbates and mechanical strains, and very 
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large aspect and surface-to-volume ratios have been proposed for applications as reinforcing fibers in 

functionally graded lightweight composite materials, components of molecular electronic devices, chemical and 

mechanical sensors and actuators, metrology probe tips, and gas and energy storage materials, respectively [6]. 

Investigation of the experimental and theory simulation based characterization and conceptualization of novel 

applications in the above areas are pursued vigorously. The theory and computational modeling of the 

characterization and application design of CNTs thus has played a significant role in leading the developments 

from the very beginning. 

At nanometer (10-9 m) length scale it is possible to describe the structural, mechanical, thermal, and electronic 

behavior fairly accurately through computational nanotechnology, i.e., physics and chemistry based modeling 

and simulations of nanomaterials, devices, and applications. This is perhaps because the devices and systems 

sizes have shrunk sufficiently on the one hand, and computing power has continued to increase on the other. In 

many cases, the quantum mechanics based simulation technologies have become also predictive in nature, and 

many novel concepts and designs were first proposed through modeling and simulations and were then followed 

by their realization or verification in experiments [7]. Computational nanotechnology is emerging as a 

fundamental engineering analysis tool for novel nano materials, devices, and systems design in a similar way 

that the continuum Finite Element Analysis (FEA) was and has been used for design and analysis of micro to 

macro scale engineering systems such as Integrated Circuits (ICs) and Micro Electromechanical Systems 

(MEMS) devices in the submillimeter length scale regime and automobiles, airplanes, ships, etc., in large-scale 

engineering structures. 

The computational nanotechnology-based modeling and simulations of CNT nanomechanics, functionally 

graded composite materials, electronic devices, sensors and actuators, and molecular machines essentially cover 

the entire range in the multi length and time-scale simulation techniques [7]. For example, simulations of 

electronic characteristics and sensor applications are very well within the high-accuracy quantum regime, 

whereas simulations for the processing and characterization of CNT reinforced functional composite materials 

would typically require mesoscale simulation techniques, which are not yet very well developed. In between 

there are atomistic simulations for nanomechanics, reactivity, and molecular machines of individual CNTs and 

Tight Binding (TB) quantum mechanical approaches for the same but at more accurate level. Many of the 

applications come about through response behavior of the nanoscale materials system to external 

electromagnetic or thermal fields where the equilibrium response or transport characteristics are simulated for 

advance prototyping of applications. 

 

II. MULTISCALE SIMULATION TECHNIQUES FOR COMPUTATIONAL 

NANOTECHNOLOGY 

The importance of computational nanotechnology based simulations in advancing the frontiers for the next 

generation of nanostructured materials, devices, and applications is based on three reasons. First, the length and 

time scales of important nanoscale systems and phenomenon have shrunk to the level where they can be directly 

addressed with high fidelity computer simulations and theoretical modeling. Second, the accuracy in the 

atomistic and quantum mechanical methods has increased to the extent that, in many cases, simulations have 
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become predictive. Third, the raw CPU power available for routine simulation and analysis continues to increase 

so that it is regularly feasible to introduce more and more “reality” in the simulation-based characterization and 

application design.The relevant problems for modeling and simulation based investigations of CNTs are truly 

multiple length and time scale in nature. At the atomistic level, there are accurate semi classical and quantum 

simulation methods that feed into the large scale classical Molecular Dynamics (MD) simulations with 10s of 

millions of atoms, which then can be coupled to mesoscopic (few hundreds of a nanometer length scale) devices 

and systems. There have been many attempts to develop an integrated “grand simulation tool” based approach 

that cuts across different length scales on one hand and attempts to achieve a seamless integration across the 

interfaces on the other [8,9]. In reality, most of these integration schemes are geared toward and work only for 

very specific materials and devices but do not work otherwise. In the past few years, attempts, however, have 

also been made on attacking the “right” type of problems with appropriate “right” type of techniques [7] across 

a wide range of CNT characterization and application simulations. In this section, we briefly summarize the 

main simulation approaches that have been used in investigating CNTs across many different length and time 

scales. 

 

2.1 Quantum Electronic Structure and Dynamics 

Starting from the bottom up, a few tens to hundreds of atoms are very accurately simulated with the ab initio (or 

first principles) quantum mechanics based methods, wherein simulations are aimed toward the solution of the 

complex quantum many body Schrodinger equation of the atomic system (including nuclei and electrons), using 

numerical algorithms [10]. The atoms are described as a collection of quantum mechanical particles, nuclei and 

electrons, governed by the Schrodinger equation, H Ф[{RI, r}] =E tot Ф[{RI, r}], with the full quantum many 

body Hamiltonian operator H = PI2/2MI + ZI ZJe2/RIJ + p2/ 2me + e2/r – ZIe2/|RI – r|, where RI and r are nuclei and 

electron coordinates. Using the Born-Oppenheimer approximation, the electronic degrees of freedom are 

assumed to follow adiabatically the corresponding nuclear positions, and the nuclei coordinates become 

classical variables. With this approximation, the full quantum many-body problem is reduced to a quantum 

many electron problem H[RI] Ψ[r] = Eel Ψ[r], where H = ΣPI
2/2MI + H[RI], H[RI] is electronic Hamiltonian 

Operator. 

Current ab initio simulation methods are based on a rigorous mathematical foundation of the density functional 

theory (DFT) [11,12]. This is derived from the fact that the ground state total electronic energy is a functional of 

the density of the system. Kohn and Sham [11,12] have shown that the DFT can be reformulated as single-

electron problem with self-consistent effective potential including all the exchange correlation effects of 

electronic interactions: 

H1 = p2/2 me + VH(r) + VXC[ρ(r)] + Vion-el(r), 

H1Ψ(r) = εΨ(r), for all atoms 

ρ(r) = Σ|Ψ(r)|2. 

This single-electron Schrodinger equation is known as Kohn-Sham equation, and the Local Density 

Approximation (LDA) has been introduced to approximate the unknown effective exchange correlation 

potential. This DFT-LDA method has been very successful in predicting materials properties without using any 
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experimental inputs other than the identity of the constituent atoms. The DFT based ab initio methods have 

proven successful in a variety of simulations involving structural, chemical, and electronic characterization of 

nanostructured materials such as clusters, fullerenes, nanotubes, and nanowires. For practical applications, the 

DFT-LDA method is implemented with a pseudopotential approximation and a Plane Wave (PW) basis 

expansion of single electron wave functions [10] These approximations reduce the electronic structure problem 

to a self-consistent matrix diagonalization problem. At the end of the iterative matrix diagonalization procedure, 

the resulting eigen values correspond to the quantum mechanically possible electronic energy states of the 

system, and the eigen functions contain information about the electronic density distribution in the computed 

space. One of the popular DFT simulation programs is the Vienna Ab initio Simulation package (VASP), which 

is available through a license agreement [13].CNTs. For dynamic problems, nonorthogonal tight binding 

molecular dynamics schemes are more accurate but are not easily converted to order N type and can typically 

handle only systems with up to a few thousand atoms [16].  

In the tight binding model [15], an approximation is made to further simplify the quantum many electron 

problems. It is assumed that the crystal potential is strong, which is the same as assuming that the ionic 

potentials are strong so that when an electron is captured by an ion during its motion through the lattice, the 

electron remains at that site for a long time before leaking, or tunneling, to the next ion site. During the capture 

interval, the electron orbits primarily around a single ion uninfluenced by other atoms so that its state function is 

essentially that of an atomic orbital. Most of the time the electron is tightly bound to its own atom. In other 

words, the atomic orbital is modified only slightly by the other atoms in the solid. The tight binding wave 

function is, therefore, constructed by taking a linear combination of localized atomic orbitals, modulated by a 

Bloch wave function phase factor for a periodic lattice. This ensures that an electron in a tight binding level will 

be found, with equal probability, in any cell of the crystal, because its wave function changes only by the phase 

factor as it moves from one cell to another. The computational efficiency of the tight binding method derives 

from the fact that the electronic Hamiltonian H[RI] can be parameterized. Furthermore, the electronic structure 

information can be easily extracted from the tight binding Hamiltonian, which in addition also contains the 

effects of angular forces in a natural way. 

 

2.2. Atomistic Structure and Molecular Dynamics Simulations 

For larger size CNT systems (hundreds of thousands of atoms), the classical atomistic or MD simulations, which 

refer most commonly to the situation wherein the motion of atoms or molecules is treated in approximate finite 

differential equations of Newtonian mechanics, are used. Except when dealing with very light atoms and very 

low temperatures, the use of classical MD methods is well justified. In MD simulations the dynamic evolution 

of the system is governed by Newton’s classical equation of motion, d2RI/dt2 = FI = –dV/dRI, which is derived 

from the classical Hamiltonian of the system, H = Ψ PI
2/2MI + V({RI}). The atomic forces are derived as 

analytic derivatives of the interaction energy functions, FI({RI}) = –dV/dRI, and are used to construct Newton’s 

classical equations of motion, which are second order ordinary differential equations. In its global structure a 

general MD code typically implements an algorithm to find a numerical solution of a set of coupled first order 

ordinary differential equations given by the Hamiltonian formulation of Newton’s second law [18]. The 
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equations of motion are numerically integrated forward in finite time steps using a predictor corrector method. 

The interatomic forces are described with explicit or implicit many body force field functions, using the 

Embedded Atom Method (EAM) or Modified Embedded Atom Method (MEAM) type functions for metals and 

semiconductors and Stillinger-Weber (S-W) and/or Tersoff Brenner (T-B) type potentials for semiconductors 

[19]. The T-B type potentials [20,21] are parameterized for and specially suited for carbon-based systems, such 

as CNTs, and have been used in a wide variety of scenarios with results in good agreement with experimental 

observations. One needs to be careful, however, when true chemical changes (involving electronic 

rearrangements) with large atomic displacements are expected to occur during the dynamics. 

 

2.3. Electronic and Thermal Transport Simulations 

The low bias electronic transport can be calculated as a generalization of the Transmission Amplitude T(E) of an 

incident electron with energy E in simple one-dimensional potential barrier problem. The Landauer expression 

is generally used to obtain quantum conductance from the transmission function T(E) as a function of the 

injected electron energy. The transmission function is obtained using the Green’s function formalism that has 

been described in detail recently [23]. In the nanotube devices under current consideration, a connection to the 

outside world is made through metallic leads. A realistic treatment of a nanotube interaction with metal 

electrodes must involve a judicious construction of the Green’s function and is an involved process. To maintain 

a consistency in the simulations, it is proper to use the Tight Binding (TB) formulation for both the Hamiltonian 

and the Green’s function. The non orthogonal TB Hamiltonian mentioned above consists of N by N matrices, 

where N = N(at) × N(orb), N(at) is the number of atoms in the embedding subspace, and N(orb) is the number 

of orbitals on each atom. Contrary to earlier theoretical works on quantum transport, which use N(orb) = 1 (only 

one pi-electron orbital per atom) [24], for accuracy recent calculations have used N(orb) = 9 that includes 1s, 3p, 

and 5d orbitals for C and Ni (a representative material for metal leads) interface and N(orb) = 4 for C atoms 

[25,26].For consistency, it is better to use the same TB Hamiltonian to perform full symmetry unconstrained 

molecular dynamics relaxations for the SWNT systems, which is used for conductivity calculations, because 

dynamic relaxation is found to have given results significantly different from the cases where dynamic 

relaxation was not allowed. An efficient transfer matrix formalism for obtaining the quantum conductivity of 

SWNTs, which makes explicit use of the non orthogonality of the basic functions within the above mentioned 

nonorthogonal TB scheme [27]. This new formalism allows the symmetry unconstrained structural relaxation 

and even dynamics in a consistent manner with the same Hamiltonian as used in the quantum conductivity 

calculations. Additionally, for both the structural relaxation and the quantum conductivity simulations the 

periodic boundary condition or infinite size approximations are not needed. The method is therefore especially 

suitable for finite sized CNT systems with doping, defects, and chemical functionalization because the 

Hamiltonian has been parametrized for a variety of interacting atomic species. Current vs. voltage 

characteristics of single wall CNTs have been obtained in the presence of topological defects as well as 

chemical adsorbates [27]. 

The thermal transport simulations in CNTs are in the early stages of development. Most of the attempts, so far, 

have been through direct methods for thermal conductivity simulations. The underlying approach to the 
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simulation of thermal transport is through MD simulations with the assumption that at room temperature the 

electronic contribution to the overall thermal conductivity is small and the thermal transport occurs mainly 

through phonon driven mechanisms. In direct simulation methods [28,29], appropriate heat baths [30] are 

simulated at the two ends of CNTs resulting in a flux of thermal energy from the hot region of the tube to the 

cold. The ratio of heat flux and the temperature gradient in equilibrium condition is sufficient to compute the 

thermal conductivity at the simulation temperature. The analysis of the phonon driven heat flux is also aided by 

the computations of the phonon spectrum and vibrational amplitudes, which are succinctly described recently 

for a variety of SWNTs using the MD approach [31]. In bulk semiconductors and nanowires, the response 

function–based approach has been applied with some success, and a comparison between bulk thermal 

conductivity computed with direct and response function based approaches has been discussed [32]. The 

response function based methods so far have not been applied to CNTs, because these forms quasi one 

dimensional structures and applying direct simulation methods is not too difficult. 

 

III. STRUCTURE AND SYMMETRY  

The structure and symmetry of CNTs has been described in detail in. In this section a summary of salient 

features is provided, which will be used later for understanding some of the characterization and application 

scenarios that form the focus of this chapter. A SWNT is best described as a rolled up tubular shell of graphene 

sheet [4–7]. The body of the tubular shell is mainly made of hexagonal rings (in a sheet) of carbon atoms, 

whereas the ends are capped by dome shaped half fullerene molecules. The natural curvature in the sidewalls is 

due to the rolling of the sheet into the tubular structure, whereas the curvature in the end caps is due to the 

presence of topological (pentagonal ring) defects in the otherwise hexagonal structure of the underlying lattice. 

The role of the pentagonal ring defect is to give a positive (convex) curvature to the surface, which helps in 

closing of the tube at the two ends and also make the end caps chemically more reactive compared with the 

cylindrical walls of the CNTs. Later, however, we show that the topological defect free curved structure of the 

cylindrical walls also has chemical reactivity, that is a function of the natural curvature or strain induced 

curvature of CNTs. A MWNT, similarly, is a rolled up stack of graphene sheets into concentric SWNTs, with 

the ends again either capped by half fullerenes or kept open. 

A nomenclature (n,m) used to identify each SWNT, in the literature, refers to integer indices of two graphene 

unit lattice vectors corresponding to the chiral vector of a nanotube [4–7]. Chiral vectors determine the 

directions along which the graphene sheets are rolled to form tubular shell structures and perpendicular to the 

tube axis vectors as explained in Reference 4. The nanotubes of type (n,n), are commonly called armchair 

nanotubes because of the shape perpendicular to the tube axis and have a symmetry along the axis with a short 

unit cell (0.25 nm) that can be repeated to make the entire section of a long nanotube. Other nanotubes of type 

(n, 0) are known as zigzag nanotubes because of the shape perpendicular to the axis and also have a short unit 

cell (0.43 nm) along the axis. All the remaining nanotubes are known as chiral or helical nanotubes that have 

longer unit cell sizes along the tube axis.  



 

898 | P a g e  

 

FIGURE 1 Making of armchair and zigzag carbon nanotubes with (a) rolling directions of a 

(5,5) armchair nanotube (b) shown with AA and of a (10, 0) zigzag nanotube (c) shown with ZZ  

 

IV. NANOMECHANICS AND THERMAL PROPERTIES 

The earliest atomistic simulations of CNT mechanics predicted unusually large Young’s modulus (of up to 5 

Terra Pascal [TPa] or five times larger than the modulus of diamond) and elastic limits (of up to 20 to 30% 

strain before failure) [33]. These predictions immediately raised the intriguing possibility of applying the 

nanotubes as super strong reinforcing fibers with few orders of magnitude higher strength and stiffness than any 

other known material. Subsequently, more accurate simulations using TB molecular dynamics methods and ab 

initio density functional total energy calculations with realistic strain rate, temperature dependence, and CNT 

sizes have provided more realistic values of 1 TPa as the Young’s modulus and 5 to 10% elastic limit of the 

tensile strain before failure [34]. In this section, computational modeling and simulation based investigations of 

the strength and stiffness modulus, plasticity and yielding behavior, vibrational and thermal transport behavior, 

reinforcing of polymer composites by CNTs and mesoscopic simulations of CNTs are described. 

 

4.1. Modulus of Carbon Nanotubes 

The modulus of the CNTs is a measure of the strength and stiffness against small axial stretching and 

compression strains as well as nonaxial bending and torsion strains. Contributions to the good elastic 

mechanical characteristics of CNTs come mainly from the strength of in-plane covalent C–C bonds in graphene 

sheet and facile out of plane deformations of the structure. For large diameter or small curvature CNTs, the 

modulus, strength, and stiffness should therefore be comparable with the in plane modulus and strength of 

graphene sheet. In a tubular geometry, however, the elastic strain energies are also affected by the intrinsic 

curvature of the surface. Using the Tersoff [20] and T-B [21] potentials, Robertson et al. [35] showed that the 

elastic energy of a single-wall CNT scales as 
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where R is the radius of the tube. This is similar to the results deduced from the continuum elastic theory [36]. 

For axial strains, the Young’s modulus of a SWNT is defined as 

 

where E is the strain energy and V is the volume of the nanotube. Initial computational studies [33] using the 

same T-B potential reported the value of Young’s modulus to be as high as 5.5 TPa. This was mainly due to a 

very small value of CNT wall thickness (~0.06 nm) used in this study [33]. It turns out that this was partly 

because of the attempts to use continuum theory to describe equivalence between a shell model and the 

atomistic descriptions of the elastic properties of CNTs. In many later works, this discrepancy [33] has been 

corrected.  

 

FIGURE 2 Modulus of carbon nanotubes, (a) Young’s modulus of C, BN, and other heteroatomic 

nanotubes. (From E. Hernandez et al. Phys. Rev. Lett. 80, 4502, 1998. With permission.) (b) Bending 

stiffness, and (c) torsion stiffness 

The bending stiffness of a single-wall CNT is defined as 

 

where E is the total strain energy, L is the length, and C is the curvature of the bent nanotube, which is related 

with the bending angle θ as 

 

From the elastic theory of bending of beams, the strain energy of a bent nanotube can be expressed as 

 

where Y the Young’s modulus of the SWNT, and h is the thickness of the wall [42]. The integral is taken around 

the circumference of the nanotube, and t is distance of atoms from the central line (or the bent axis) of the tube. 

From this expression, the bending stiffness K is found to be equal to Yh(πr3) and scales as cubic of the radius of 

the tube. Results from the molecular dynamics simulations, with Tersoff-Brenner potential, show that stiffness 

K scales as R2.93, which is in good agreement with scaling predicted by the continuum elastic theory. The 

corresponding bending Young’s modulus (YB) of SWNT with varied diameters can be calculated from the 

above equation. For a small diameter SWNT, YB is found to be about 0.9 TPa, which is smaller than the 
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stretching Young’s modulus calculated from the TB method or first principle theory. The computed smaller 

value is also similar to what Robertson et al.[34][35] showed in their study of the elastic energy of SWNTs, and 

the qualitative agreement is rather good. Poncharal et al. [43] have experimentally studied the bending Young’s 

modulus of MWNTs (diameter >10 nm) using electrically induced force and found that the bending Young’s 

modulus is in the range of GPa and decreases sharply with the increase in tube diameter. The large angle 

bending of SWNTs and MWNTs leads to elastic collapse of the structure that has been investigated in molecular 

dynamics simulations [44]. 

[36] The torsion stiffness of a CNT is defined as 

 

where E is the total strain energy and ς is the torsion angle. The shear strain is related with torsion angle as 

 

where R is the radius of tube and L is its length. From continuum elastic theory, the total strain energy of a 

cylinder can be written as 

 

where G is shear modulus of the tube. The torsion stiffness thus is related with G as 

 

where h is the thickness of the wall of the nanotube. The recently computed values of the torsional stiffness of 

several armchair and zigzag CNTs using T-B potential show the torsional stiffness to be about 

 

for (5,5) and (10,0) CNTs. This is in good agreement with the prediction of cubic dependence from the 

continuum elastic theory. The shear modulus of CNTs is found to be around 0.3 TPa and is not strongly 

dependent on diameters (for D > 0.8 nm). This value is smaller than that of about 0.45 TPa in Reference 37 

calculated with an empirical force constant model. For small diameter tubes, such as a (5,5) nanotube, the shear 

modulus deviates from the continuum elastic theory description. 

 

FIGURE 3 (a)Collapse of CNTs under compressive strain with (a) sideways buckling or fin-like 

structures under elastic limit. (b)Local plastic collapse of the structure driven by graphitic to 

diamond-like bonding transition at the location of the collapse while the CNT remains 

essentially straight. 
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FIGURE 4 (a) Configuration of a Stone-Wales defect that initiates the plastic collapse of a CNT 

under tensile strain [56], and (b) a series of SW defects form and slide apart from each other as 

CNT is continued to be stretched 

 

4.2. Buckling, Collapse, and Plasticity of Carbon Nanotubes 

As the axial strain is increased gradually to more than a few percent, nanotubes have been observed to undergo 

two kinds of structural changes. First, under compressive strains, nanotubes exhibit structural instabilities 

resulting in the sideways buckling and collapse (flattening into fin like structures) of the structure, but the 

deformed tubular structure remains with in elastic limit for more than 20% compressive strain [33]. Experiments 

have shown sideways buckling, collapse, and breaking feature in compressed and tensile stretched MWNTs in 

polymer composite materials [45,46]. The positions of these deformations can be well predicted with continuum 

mechanics based description of CNTs, and a reasonable comparison with MD simulations using T-B potential is 

obtained [33]. Recently, more extensive MD simulations at higher temperatures [47] and simulations with 

higher accuracy tight binding molecular dynamics methods [40] showed that the above results [33] were 

inherently limited by the shortcomings of continuum mechanics based approaches. Specifically, in the same 

experiment on compressed MWNT in a polymer composite [45], another mode of plastic deformation of 

compressed thin nanotubes was observed, where the CNTs remain essentially straight but the structure locally 

collapses at large compression. Srivastava et al. [40] used a non orthogonal tight binding molecular dynamics 

method, and found that within Euler buckling length limitation a straight CNT can locally collapse without 

undergoing either sideways buckling modes or through formation of fin like structures. The local plastic 

collapse is due to a graphitic (sp2) to diamond-like (sp3) bonding transition at the location of the collapse, which 

is driven by a compressive pressure as high as 150 GPa at the location of the collapse. 
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FIGURE 5 The yielding strain of a CNT under tension is sensitive to temperature and the rate 

at which the strain is applied, (a) a tensile strained CNT at two different temperatures yield at 

different strains and with different type of structural defects, (b) yielding strain of a CNT as a 

function of strain rate varying over 3 orders of magnitude and temperature. [56]. 

 

FIGURE 6 The yielding strain of a multiwall CNT through a model of a double wall CNT where 

the contact is made only on the outermost wall (top), and the yielding strain of the double-wall 

CNT as a function of strain rate (bottom). The experimentally feasible strain rate and yielding 

strain is indicated with the elliptical area [57]. 

 

4.3. Simulations of Vibrational and Thermal Properties 

The small and large amplitude nanomechanics of CNTs described above focuses on the strength and stiffness 

characterization as well as mechanism and rate of the failure of the nanotubes under external load. Very small 

amplitude harmonic displacements of C atoms from their equilibrium position, on the other hand, keep the 

structural integrity but are mainly responsible for the vibrational and thermal properties of CNTs. In this section, 
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a brief summary on the simulations of vibrational or phonon spectra and thermal conductivity and heat pulse 

propagation in CNTs is provided. The simulated phonon and vibrational spectra of any newly discovered 

material are generally useful for characterization and were simulated first to identify and assign the peaks in 

resonance Raman experiments on CNTs [58]. The phonon spectrum is obtained by constructing and 

diagonalizing dynamical matrix from position dependent interatomic force constants. The eigen values of the 

dynamic matrix gives the frequency of vibrations, and the corresponding eigen vectors give nature of the 

corresponding modes of the vibration for atoms within a unit cell. The accuracy of the computed vibrational or 

phonon spectra at 0 K obviously depends on the accuracy of the interatomic forces used in constructing the 

dynamical matrix. Many studies on the zero temperature vibrational or phonon spectra of CNTs using the ab-

initio density functional [38], tight-binding [58–61], and harmonic spring constants satisfying hooke's law [62] 

have appeared. Agreement between the experimental peaks and the zero temperature vibrational peaks is 

generally good because only the configurations at or very close to equilibrium structures are investigated. 

Thermal transport through CNTs, on the other hand, is sensitive to the choice of good atomic interaction 

potential, including the anharmonic part because the atomic displacements far from equilibrium positions are 

also sampled. The room temperature (300 K) phonon spectra or density of states and vibrational amplitudes 

have been computed recently [31]. The spectra were simulated through Fourier transform of temperature 

dependent velocity autocorrelation functions computed from MD trajectories using T-B potential for C–C 

interactions [20,21]. Good agreement with zero temperature phonon spectra, computed with higher accuracy ab 

initio DFT and TB methods, [38,58–61], was obtained. Additionally, the line width of the computed spectra 

provides temperature dependent life and correlation time of the phonon excitations involved. The spectra were 

used to assign the low-frequency Raman modes of CNT bundles as well [31]. 

 

FIGURE 7 The direct MD-simulated thermal conductivity of CNTs as a function of strain rate 

with (a) comparison between a (10,10) nanotube and graphene sheet; (b) a comparison between 

(5,5), (10,10), and (15,15) nanotubes; and (c) a comparison between a (5,5) and (10,0) nanotubes  
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4.4. Mesoscopic Scale Simulations of CNTs 

The simulations of individual CNTs and CNT reinforced polymer composites described so far are done with 

MD simulation methods where the advantage is that the structure and dynamics can be described very 

accurately at the atomistic level. Even electronic or quantum effects can be incorporated by using the 

interatomic force fields described by more accurate TB or ab initio DFT approaches. The limitations are that, on 

a regular basis, simulations with millions of atoms are not feasible when long range or large size structural, 

dynamic, and temporal effects are incorporated. Such effects may determine the characteristic behavior in 

composites involving bundles of CNTs, MWNTs, or dispersion-diffusion of many SWNTs. These issues are 

important from both the processing and the applications point of view. A bridge to macroscopic size systems is 

feasible through continuum mechanics based approaches, but such approaches generally neglect all atomic and 

molecular level interactions that could primarily determine the much promised novel application capabilities of 

these nanostructured materials. In the intermediate “mesoscopic” (~ a few hundred nanometers) length scale 

regime, therefore, CNTs and composites are generally “too large” to be simulated with quantum or atomistic 

approaches on a regular basis and are “too small” for the direct applicability or even accuracy of the methods 

based on continuum mechanics. It turns out that currently there are no mesoscopic structural and dynamic 

methods especially suited for CNTs or composites based on CNTs. There have been some attempts to find an 

equivalence between the large scale “structural mechanics” that is based on beams and struts and the atomistic 

scale “molecular mechanics” based on atoms and bonds. A preliminary hybrid approach, “molecular structural 

mechanics,” has been developed. So far it has been applied only for static structural simulations, and it is not 

clear how much computational efficacy is achieved when individual atoms and molecules are replaced by 

equivalent but individual struts and beams in the alternative description [70]. 

 

V. CONCLUSION 

The examples discussed here provide a narrow window on a very broad field of applications and areas that are 

opening up and directly fueled by the efforts and advances in the computational nanotechnology based 

investigations of CNTs. Some of the covered areas and applications in this chapter include nanomechanics and 

thermal properties of CNTs and CNTs in polymer composite materials; chemical reactivity or functionalization 

of pristine or deformed nanotubes, gas physisorption, diffusion, and storage devices through CNTs, polymer 

translocation and diffusion in CNT nanochannels for sequencing or drug delivery applications; molecular 

electronic device components through nanotube heterojunctions and nanosensors for miniscule amounts of gas 

and biochemical detection applications, etc. In the future, it may be possible to conceptualize nanoscale 

synthetic machines and motors that could be powered and controlled through external laser, electric, or magnetic 

fields and operate in a chemical solution phase or inert gas environment. Such a concept of nanogears is shown 

in Figure 8. The design of the gears is based on the analogous chemical reactions that are known to occur in 

bulk phase chemistry. No fabrication pathway for making such nanoscale gears has been suggested to date. 

Computational modeling and simulation is useful to investigate the optimal structural, material, and operating 

conditions. The result of such investigations  is that CNT-based nanogears, if made, could be more robust than 
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similar gears and other machines fabricated and operated in the macroworld. This is an example illustrating that 

the future of CNT based devices and systems can be shaped by the advances in computational nanotechnology.  

 

FIGURE 8 CNT-based gears simulated at NASA Ames in the beginning of the program 
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