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ABSTRACT 

Grey cast iron of the grade ASTM 48 is in the use for manufacturing  casting parts with low or middle duty or 

load, such as various stove parts, gas burners, boiler parts, protective cover, hand wheel, brackets, base plate, 

crane balls, counter weight, handle, machine base etc. The production volume rate is mainly lies with the 

material removal rate during machining process and this is essential towards fulfilling the demand. Henceforth 

the maximization of the MRR is indispensable in this regard. This attempt of investigation involves in optimising 

the MRR of turning operations on ASTM 48 Grey cast iron with the application of six optimization algorithms 

namely, Particle swarm Optimization, Scatter Search Algorithm, Simulated Annealing Algorithm, Artificial Bee 

Colony Algorithm, Ant Colony Algorithm and Firefly algorithm. By assessing the simulation performance of the 

algorithms in terms of MSE the best algorithm is chosen for further analysis and forecast with the hybridization 

approach of statistically significant relationship integrated in the programme. Machining speed, feed, depth of 

cut and material removal rate are chosen as the process parameters. Regression equation modeling, analysis 

and optimization algorithms are used to identify the influences between the parameters and optimized.  

Keywords- Turning, Grey cast iron of Grade ASTM 48, Regression, Particle swarm Optimization, Scatter 

Search Algorithm, Simulated Annealing Algorithm, Artificial Bee Colony Algorithm, Ant Colony Algorithm 

and Firefly algorithm, hybridization, Optimisation, Minitab, MATLAB.  

 

I. INTRODUCTION 

Nowadays, the manufacturers are keenly concentrating on improving productivity with reasonable cost with the 

time consciousness with no compromise in the product quality attributes. In addition, owing to the extensive use 

of highly automated machine tools in the industry, manufacturing domain requires dependable models, right 

ways and means to predict the resultant performance of machining processes. The necessity of selection, 

implementation on the optimal machining conditions and most appropriate cutting tool has been felt over in the 

http://www.iron-foundry.com/cast-iron-stove.html
http://www.iron-foundry.com/gas-burners.html
http://www.iron-foundry.com/grey-iron-counter-weight.html
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recent past and present. Obtaining the improved state of productivity is based on the rate of material being 

removed from the material stock during machining operations with minimum time which mainly depends on the 

exact assortment of process parameters. This phenomenon attracts the optimisation methodology is practice 

used by all. Traditional and nontraditional optimisation techniques are available in plenty and the application 

part of optimisation techniques is carefully done in order to identify the algorithms which support to reach the 

optimum solutions to the issues by taking care of all related attributes. This attempt aims towards paying 

attention towards the maximization of MRR during machining operations.  Six commonly used optimisation 

algorithms are chosen for evaluation and the convergence of each algorithm is observed with reference to the 

performance indicator MSE. The best performed algorithm is identified for this case and further evaluation is 

organized with hybridization between algorithm and statistical relationship. Machining speed, feed, depth of cut 

are the input parameters considered and material removal rate is chosen as the outcome process parameters.   

 

III. RELATED WORKS 

Srikanth and Kamala [1] have demonstrated the application of a unique real coded genetic algorithm (RCGA) to 

verdict the optimal machining parameters through the explanations about the various issues of RCGA along 

with its advantages over the existing model of binary coded genetic algorithm (BCGA).  Aslan [2] declared 

through their research that the right and optimum selection of process condition is mainly important because that 

determine surface quality of the product and flank wear phenomena of the cutting tool. While performing the 

turning and facing operations an inappropriate choice of cutting parameters will cause undesired quality and 

high tooling cost. Thomas et al. [3] have realized that DOE which addresses the process of planning the 

experiment, so that the appropriate data could be identified and move to further intensive analysis by statistical 

methods, resulting in an applicable and the selective objective conclusion. Palanikumar et al. [4] have made with 

an attempt to assess the influence of machining parameters on surface roughness in processing composites and 

concluded that the feed rate has more authority on surface quality which followed by cutting speed. Suleyman et 

al. [5] have concluded through their research with the analysis based on the response surface methodology, that 

the tool nose radius is the dominant factor on the surface quality while doing turning process on the AISI steel. 

Nikolaos et al. [7] have investigated on the surface quality and predicted in turning process on AISI 316 L 

materials. Oezel and Karpat [8] have proved that the surface roughness is primary results of process parameters 

such as tool geometry and cutting conditions (such as feed rate, cutting speed, depth of cut, etc). An 

evolutionary approach was taken through applying the techniques of optimization for cutting parameters during 

continuous finished profile machining using non-traditional techniques by Saravanan et al [9]. In their attempt 

they have employed six non-traditional algorithms, the GA, SAA, TS, MA, ACO and the PSO to resolve the 

issues taken for their analysis. All the six, GA, SA, TS, ACO, MA and PSO were compared with different 

profiles. Moreover a user friendly software package had developed to input the profile interactively and to 

obtain the optimal parameters using all six algorithms.  Agapiou [10] laid a path through their investigation on 

the suitability of regression analysis applications to find the optimal levels and to analyze the effect of the 

drilling parameters on surface finish. Emad Ellbeltagi et al. [11] mapped the suitability among five 
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evolutionary–based optimization algorithms (GA, MA, PSO, ASO, and SFL) and reported, PSO method was 

generally found to perform better than other algorithms in terms of success rate and solution quality. 

III. EXPERIMENTAL OBSERVATION  

Grey cast iron of the Grade ASTM 48 material taken for turning experiment by Md. Maksudul Islam et al. [6] 

with the intention of investigation of the material removal rate during processing in conventional lathe with the 

HSS cutting tool. The basic chemical composition of the specimen material is Carbon 3.2 to 3.5 %; Silicon 1.8 

to 2.4 %; Magnesium 0.5 to 0.9 % and Fe as balance. Referring to the Mechanical properties the material 

exhibits the tensile strength of class 20 is Min. 150 Mpa; the hardness range is 150 to 200 HB which has good 

casting property, shock absorption, wear-resisting property. The process main input machining parameters are 

speed, feed and depth of cut. About three stages were chosen as listed in Table 3.1. For conducting the 

experiment L27 array was selected. The outcome parameter value with reference to the set of input parameter 

selection was observed [6] and given in the Table 3.2. Experiment executed in the environment as dry 

machining.  

Table 3.1 Input machining parameters level selection 

Machining parameters Stage 1 Stage 2 Stage 3 

Speed (rpm) 112 0.125 0.25 

Tool Feed (mm/rev) 175 0.138 0.30 

Depth of cut (mm) 280 0.153 0.35 

 

Table 3.2 Experimental observed data set [6] 

Ex. 

No. 
Speed 

Tool 

Feed 

Depth 

of Cut 
MRR 

Ex. 

No. 
Speed 

Tool 

Feed 

Depth 

of 

Cut 

MRR 

1 112 0.125 0.25 3.38 15 175 0.153 0.35 6.28 

2 112 0.138 0.30 4.01 16 175 0.125 0.25 4.78 

3 112 0.153 0.35 4.55 17 175 0.138 0.30 5.69 

4 112 0.125 0.25 3.31 18 175 0.153 0.35 6.36 

5 112 0.138 0.30 3.93 19 280 0.125 0.25 5.3 

6 112 0.153 0.35 4.45 20 280 0.138 0.30 6.31 

7 112 0.125 0.25 3.23 21 280 0.153 0.35 7.02 

8 112 0.138 0.30 3.82 22 280 0.125 0.25 5.32 

9 112 0.153 0.35 4.32 23 280 0.138 0.30 6.31 

10 175 0.125 0.25 4.59 24 280 0.153 0.35 7.03 

11 175 0.138 0.30 5.48 25 280 0.125 0.25 5.46 

12 175 0.153 0.35 6.14 26 280 0.138 0.30 6.45 

13 175 0.125 0.25 4.72 27 280 0.153 0.35 7.09 

14 175 0.138 0.30 5.59 - - - - - 

 

http://www.iron-foundry.com/cast-iron-hardness-range.html
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IV. MATHEMATICAL RELATIONSHIP 

The level of impact of the input machining parameters (speed, feed and depth of cut) on the output parameter 

(material removal rate) are analysed by statistical regression relationship through the commercial Minitab17 

software. Higher level of significance is registered by the second order regression relationship between the 

variables than the first order regression which is evident through the values of the R – sq. Both the first and 

second order statistical values of R-sq can be viewed from the Table 4.1.  

Table 4.1 Statistical relationship between the process variables 

Parameter Regression S R-sq R-sq(adj) R-sq(pred) 

MRR 
First order 0.39688 90.06% 88.76% 86.76% 

Second order without self power  0.402806 90.65% 88.42% 86.15% 

 

The second order regression equation of the material removal rate in terms of input parameter combination is 

MRR = - (0.7) + (0.038 x speed) + (13 x feed) + (5 x doc) – (0.61x speed x feed) + (0.203 x speed x doc)              

(4.1) 

The statistical residual plots through Minitab analysis for the material removal rate are displayed in the Figure 

4.1. The best subset regression analysis reveals that the speed is the major influencing factor which contributes 

57.8 % ; the parameter depth of cut registered next level influence with 32.6 % whereas the feed rate exhibits 

very little amount of influence on the MRR. 

 

Figure 4.1 Residual plots of material removal rate 

 

V. OPTIMISATION TECHINQUES  

Process optimization is the arrangement order to get the adjustment in the process so as to optimize a set of 

parameters without violating the inbuilt restrictions. The accepted objectives through this exercise are either to 

minimize the cost of the process or to maximize the outcome with effectiveness. In the MATLAB R2017 

software, an effort is taken in this paper to evaluate the effectiveness of the optimisation algorithms and also to 

forecast of the output variable referring to the input process variables with the optimization algorithms namely, 

Particle swarm Optimization, Scatter Search Algorithm, Simulated Annealing Algorithm, Artificial Bee Colony 
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Algorithm, Ant Colony Algorithm and Firefly algorithm. Estimating of the optimized material removal rate in 

the turning process on the ASTM 48 grey cast iron specimen was performed with the main objective as 

maximizing. To analyze the authority of the machining speed, feed and depth of cut over the material removal 

tempo through MATLAB R2017 platform, the Elman Back Propagation process is functionalized. 50000 

iterations have been initiated in this simulation process. The suitability of all the six algorithms are compared 

through the level of in computation which is in the form MSE (mean squared error) occurred rate as the 

performance indicator. Figure 5.1 shows the simulation progress of the data training in MATLAB. The accuracy 

level of the computation is mentioned in the Table 5.1.  

 

Figure 5.1 Data training progress of 50000 iterations 

Table 5.1 Mean squared error value comparison 

Algorithm Mean squared error Ranking 

Firefly algorithm 0.000051 1 

Ant Colony Algorithm 0.000764 2 

Simulated Annealing Algorithm 0.003212 3 

Scatter Search Algorithm 0.005372 4 

Particle Swarm Optimization Algorithm 0.008319 5 

Artificial Bee Colony Algorithm 0.018459 6 
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Figure 5.2 Block diagram of Hybridization 

Firefly algorithm converges with the minimum value of mean squared error (0.000051) than the other 

algorithms in this simulation. The ranking of the algorithms with reference to the performance also noted 

through the Table 5.1. The new approach of hybridization with regression equations as clause for simulation is 

shown in the Fig. 5.2. In addition to that to form a soft curve with closer interval values of the material removal 

rate, the parameters selected was further division with 0.01 mm step value for depth of cut, 16.8 rpm step in 

speed and 0.0112 mm / rev step in tool feed.  So computed results of the Material Removal Rate through this 

Regression integrated Firefly Algorithm method for all combination of the parameter including the step values 

chosen to the programme are listed in the Table 5.2 to Table 5.6. 

Table 5.2 MRR for the speed 112, 128.8 rpm Vs feed 0.125, 0.1362, 0.1474, all depth of cut 

v = 112 rpm v = 128.8 rpm 

DOC 
f = 0.125 f = 0.1362 f = 0.1474 

DOC 
f = 0.125 f = 0.1362 f = 0.1474 

MRR 1 MRR 2 MRR 3 MRR 1 MRR 2 MRR 3 

0.25 3.234 4.729 4.966 0.25 4.932 4.847 5.095 

0.26 3.515 4.550 4.420 0.26 4.041 4.727 4.637 

0.27 3.796 4.328 3.942 0.27 4.354 4.523 4.169 

0.28 4.072 4.127 3.608 0.28 4.668 3.926 3.816 

0.29 4.352 3.724 3.660 0.29 4.101 4.240 3.499 

0.3 3.863 4.003 4.019 0.3 4.039 4.004 3.811 

0.31 3.861 4.281 4.281 0.31 4.046 4.106 4.122 

0.32 3.825 3.960 4.639 0.32 4.016 4.175 4.892 

0.33 3.835 4.166 4.800 0.33 4.029 4.470 4.746 

0.34 3.820 4.174 4.495 0.34 4.073 4.509 5.060 

0.35 3.829 4.166 4.771 0.35 4.142 4.519 5.374 
 

Table 5.3 MRR for the speed 145.6, 162.4 rpm Vs feed 0.125, 0.1362, 0.1474, all depth of cut 

 

v = 145.6 rpm v = 162.4 rpm 

DOC 
f = 0.125 f = 0.1362 f = 0.1474 

DOC 
f = 0.125 f = 0.1362 f = 0.1474 

MRR 1 MRR 2 MRR 3 MRR 1 MRR 2 MRR 3 

0.25 5.400 4.975 5.371 0.25 5.960 5.134 5.870 

0.26 4.503 4.890 4.991 0.26 5.420 5.068 5.659 

0.27 4.847 4.679 4.432 0.27 5.283 4.815 5.012 

0.28 4.297 4.340 4.051 0.28 4.529 4.689 4.450 

0.29 4.265 4.685 3.833 0.29 4.353 4.419 4.103 

0.3 4.191 4.171 4.178 0.3 4.330 4.366 4.483 

0.31 4.221 4.239 4.522 0.31 4.395 4.341 4.865 

0.32 4.170 4.438 4.868 0.32 4.333 4.677 5.240 

0.33 4.223 4.781 5.217 0.33 4.398 5.064 5.626 

0.34 4.341 4.829 5.564 0.34 4.609 5.173 6.002 

0.35 4.448 5.022 5.912 0.35 4.812 5.565 6.387 
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Table 5.4 MRR for the speed 179.2, 196 rpm Vs feed 0.125, 0.1362, 0.1474, all depth of cut 

v = 179.2 rpm v = 196 rpm 

DOC 
f = 0.125 f = 0.1362 f = 0.1474 

DOC 
f = 0.125 f = 0.1362 f = 0.1474 

MRR 1 MRR 2 MRR 3 MRR 1 MRR 2 MRR 3 

0.25 6.195 5.395 6.320 0.25 6.302 5.834 6.527 

0.26 5.810 5.350 6.201 0.26 6.070 5.883 6.353 

0.27 5.653 5.030 5.744 0.27 5.959 5.526 5.965 

0.28 4.739 4.981 4.951 0.28 4.919 5.203 5.128 

0.29 4.461 4.577 4.835 0.29 4.597 4.731 5.128 

0.3 4.472 4.534 4.721 0.3 4.611 4.641 4.902 

0.31 4.543 4.433 5.137 0.31 4.676 4.533 5.348 

0.32 4.468 4.873 5.551 0.32 4.606 5.059 5.797 

0.33 4.628 5.317 5.965 0.33 4.907 5.572 6.245 

0.34 4.903 5.564 6.381 0.34 5.227 5.931 6.696 

0.35 5.184 5.983 6.794 0.35 5.554 6.193 6.317 
 

 

Table 5.5 MRR for the speed 212.8, 229.6 rpm Vs feed 0.125, 0.1362, 0.1474, all depth of cut 
 

v = 212.8 rpm v = 229.6 rpm 

DOC 
f = 0.125 f = 0.1362 f = 0.1474 

DOC 
f = 0.125 f = 0.1362 f = 0.1474 

MRR 1 MRR 2 MRR 3 MRR 1 MRR 2 MRR 3 

0.25 6.341 6.265 6.615 0.25 6.323 6.499 6.659 

0.26 5.719 6.398 6.379 0.26 5.866 6.620 6.380 

0.27 6.202 6.206 5.970 0.27 6.381 6.554 5.925 

0.28 5.069 5.364 5.113 0.28 5.172 5.464 5.073 

0.29 4.755 4.980 5.234 0.29 4.921 5.267 5.315 

0.3 4.759 4.852 5.013 0.3 4.924 5.174 5.067 

0.31 4.797 4.726 5.496 0.31 4.917 5.120 5.585 

0.32 4.793 5.341 5.982 0.32 5.014 5.845 6.101 

0.33 5.206 5.862 6.462 0.33 5.506 6.173 6.615 

0.34 5.581 6.176 6.948 0.34 5.913 6.325 6.328 

0.35 5.867 6.293 6.288 0.35 6.069 6.352 6.258 

 

Table 5.6 MRR for the speed 263.2, 280 rpm Vs feed 0.125, 0.1362, 0.1474, all depth of cut 
 

v = 263.2 rpm v = 280 rpm 

DOC 
f = 0.125 f = 0.1362 f = 0.1474 

DOC 
f = 0.125 f = 0.1362 f = 0.1474 

MRR 1 MRR 2 MRR 3 MRR 1 MRR 2 MRR 3 

0.25 6.301 6.611 6.675 0.25 6.295 6.724 6.685 

0.26 5.945 6.703 6.391 0.26 5.925 6.720 6.441 

0.27 6.497 6.692 5.879 0.27 6.543 6.674 5.868 

0.28 5.244 5.498 5.086 0.28 5.376 5.381 5.237 

0.29 5.096 6.049 5.420 0.29 5.542 6.001 5.588 

0.3 5.111 5.475 5.656 0.3 5.627 5.779 5.793 
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0.31 5.051 5.608 5.603 0.31 5.472 6.082 6.099 

0.32 5.264 6.246 6.154 0.32 5.953 6.497 6.079 

0.33 5.798 6.355 6.707 0.33 6.282 6.538 6.696 

0.34 6.158 6.414 6.284 0.34 6.395 6.496 6.216 

0.35 6.192 6.394 6.240 0.35 6.356 6.436 6.240 

 

 

The duration of Firefly integrated with Regression relations availed 621.64 pulses to compute. The scatter plots 

formation through for the above results are shown for user references in the following Figures 5.3 to Figure 5.10 

 

Figure 5.3 MRR plots of speed 112 rpm & feed 0.125, 0.1362, 0.1474 mm / rev 

 

 

Figure 5.4 MRR plots of speed 128.8 rpm & feed 0.125, 0.1362, 0.1474 mm / rev 
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Figure 5.5 MRR plots of speed 145.6 rpm & feed 0.125, 0.1362, 0.1474 mm / rev 

 

Figure 5.6 MRR plots of speed 162.4 rpm & feed 0.125, 0.1362, 0.1474 mm / rev 

 

Figure 5.7 MRR plots of speed 179.2 rpm & feed 0.125, 0.1362, 0.1474 mm / rev 
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Figure 5.8 MRR plots of speed 196 rpm & feed 0.125, 0.1362, 0.1474 mm / rev 

 

Figure 5.9 MRR plots of speed 212.8 rpm & feed 0.125, 0.1362, 0.1474 mm / rev 

 

Figure 5.10 MRR plots of speed 229.6 rpm & feed 0.125, 0.1362, 0.1474 mm / rev 
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Figure 5.11 MRR plots of speed 280 rpm & feed 0.125, 0.1362, 0.1474 mm / rev 

VI.  RESULTS AND CONCLUSIONS 

For chosen experimental parameters with the selected level, Second order without self power relationship 

between the input, output variables is statistically significant. Firefly Algorithm converges with minimum MSE 

towards optimising than the others (Particle swarm Optimization, Scatter Search Algorithm, Simulated 

Annealing Algorithm, Artificial Bee Colony Algorithm, Ant Colony Algorithm). Programming with the 

regression equation relationship as condition for the further simulation and estimating the outcome, the accuracy 

level in computation is improved and tuned to the finest level for the set of values. Speed is the major 

influencing factor which contributes 57.8 %; the parameter depth of cut registered next level influence with 32.6 

% whereas the feed rate exhibits very little amount of influence on the MRR. The optimum value of MRR is 

6.948 mm
3
 / sec for the speed 212.8 rpm, 0.1474 mm / rev feed, 0.34 mm depth of cut combination.   
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