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ABSTRACT

Grey cast iron of the grade ASTM 48 is in the use for manufacturing casting parts with low or middle duty or
load, such as various stove parts, gas burners, boiler parts, protective cover, hand wheel, brackets, base plate,
crane balls, counter weight, handle, machine base etc. The production volume rate is mainly lies with the
material removal rate during machining process and this is essential towards fulfilling the demand. Henceforth
the maximization of the MRR is indispensable in this regard. This attempt of investigation involves in optimising
the MRR of turning operations on ASTM 48 Grey cast iron with the application of six optimization algorithms
namely, Particle swarm Optimization, Scatter Search Algorithm, Simulated Annealing Algorithm, Artificial Bee
Colony Algorithm, Ant Colony Algorithm and Firefly algorithm. By assessing the simulation performance of the
algorithms in terms of MSE the best algorithm is chosen for further analysis and forecast with the hybridization
approach of statistically significant relationship integrated in the programme. Machining speed, feed, depth of
cut and material removal rate are chosen as the process parameters. Regression equation modeling, analysis
and optimization algorithms are used to identify the influences between the parameters and optimized.
Keywords- Turning, Grey cast iron of Grade ASTM 48, Regression, Particle swarm Optimization, Scatter
Search Algorithm, Simulated Annealing Algorithm, Artificial Bee Colony Algorithm, Ant Colony Algorithm
and Firefly algorithm, hybridization, Optimisation, Minitab, MATLAB.

I. INTRODUCTION

Nowadays, the manufacturers are keenly concentrating on improving productivity with reasonable cost with the
time consciousness with no compromise in the product quality attributes. In addition, owing to the extensive use
of highly automated machine tools in the industry, manufacturing domain requires dependable models, right
ways and means to predict the resultant performance of machining processes. The necessity of selection,

implementation on the optimal machining conditions and most appropriate cutting tool has been felt over in the
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recent past and present. Obtaining the improved state of productivity is based on the rate of material being
removed from the material stock during machining operations with minimum time which mainly depends on the
exact assortment of process parameters. This phenomenon attracts the optimisation methodology is practice
used by all. Traditional and nontraditional optimisation techniques are available in plenty and the application
part of optimisation techniques is carefully done in order to identify the algorithms which support to reach the
optimum solutions to the issues by taking care of all related attributes. This attempt aims towards paying
attention towards the maximization of MRR during machining operations. Six commonly used optimisation
algorithms are chosen for evaluation and the convergence of each algorithm is observed with reference to the
performance indicator MSE. The best performed algorithm is identified for this case and further evaluation is
organized with hybridization between algorithm and statistical relationship. Machining speed, feed, depth of cut

are the input parameters considered and material removal rate is chosen as the outcome process parameters.

I1l. RELATED WORKS

Srikanth and Kamala [1] have demonstrated the application of a unique real coded genetic algorithm (RCGA) to
verdict the optimal machining parameters through the explanations about the various issues of RCGA along
with its advantages over the existing model of binary coded genetic algorithm (BCGA). Aslan [2] declared
through their research that the right and optimum selection of process condition is mainly important because that
determine surface quality of the product and flank wear phenomena of the cutting tool. While performing the
turning and facing operations an inappropriate choice of cutting parameters will cause undesired quality and
high tooling cost. Thomas et al. [3] have realized that DOE which addresses the process of planning the
experiment, so that the appropriate data could be identified and move to further intensive analysis by statistical
methods, resulting in an applicable and the selective objective conclusion. Palanikumar et al. [4] have made with
an attempt to assess the influence of machining parameters on surface roughness in processing composites and
concluded that the feed rate has more authority on surface quality which followed by cutting speed. Suleyman et
al. [5] have concluded through their research with the analysis based on the response surface methodology, that
the tool nose radius is the dominant factor on the surface quality while doing turning process on the AISI steel.
Nikolaos et al. [7] have investigated on the surface quality and predicted in turning process on AlSI 316 L
materials. Oezel and Karpat [8] have proved that the surface roughness is primary results of process parameters
such as tool geometry and cutting conditions (such as feed rate, cutting speed, depth of cut, etc). An
evolutionary approach was taken through applying the techniques of optimization for cutting parameters during
continuous finished profile machining using non-traditional techniques by Saravanan et al [9]. In their attempt
they have employed six non-traditional algorithms, the GA, SAA, TS, MA, ACO and the PSO to resolve the
issues taken for their analysis. All the six, GA, SA, TS, ACO, MA and PSO were compared with different
profiles. Moreover a user friendly software package had developed to input the profile interactively and to
obtain the optimal parameters using all six algorithms. Agapiou [10] laid a path through their investigation on
the suitability of regression analysis applications to find the optimal levels and to analyze the effect of the

drilling parameters on surface finish. Emad Ellbeltagi et al. [11] mapped the suitability among five
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generally found to perform better than other algorithms in terms of success rate and solution quality.

I11. EXPERIMENTAL OBSERVATION

Grey cast iron of the Grade ASTM 48 material taken for turning experiment by Md. Maksudul Islam et al. [6]
with the intention of investigation of the material removal rate during processing in conventional lathe with the
HSS cutting tool. The basic chemical composition of the specimen material is Carbon 3.2 to 3.5 %; Silicon 1.8
to 2.4 %; Magnesium 0.5 to 0.9 % and Fe as balance. Referring to the Mechanical properties the material
exhibits the tensile strength of class 20 is Min. 150 Mpa; the hardness range is 150 to 200 HB which has good
casting property, shock absorption, wear-resisting property. The process main input machining parameters are
speed, feed and depth of cut. About three stages were chosen as listed in Table 3.1. For conducting the
experiment L,; array was selected. The outcome parameter value with reference to the set of input parameter

selection was observed [6] and given in the Table 3.2. Experiment executed in the environment as dry

machining.
Table 3.1 Input machining parameters level selection
Machining parameters Stage 1 Stage 2 Stage 3
Speed (rpm) 112 0.125 0.25
Tool Feed (mm/rev) 175 0.138 0.30
Depth of cut (mm) 280 0.153 0.35
Table 3.2 Experimental observed data set [6]
Ex. Tool Depth Ex. Tool Depth
No. Speed Feed of Cut MRR No. Speed Feed of MRR
Cut
1 112 0.125 0.25 3.38 15 175 0.153 | 0.35 6.28
2 112 0.138 0.30 4.01 16 175 0.125 | 0.25 4.78
3 112 0.153 0.35 4.55 17 175 0.138 | 0.30 5.69
4 112 0.125 0.25 3.31 18 175 0.153 | 0.35 6.36
5 112 0.138 0.30 3.93 19 280 0.125 | 0.25 5.3
6 112 0.153 0.35 4.45 20 280 0.138 | 0.30 6.31
7 112 0.125 0.25 3.23 21 280 0.153 | 0.35 7.02
8 112 0.138 0.30 3.82 22 280 0.125 | 0.25 5.32
9 112 0.153 0.35 4.32 23 280 0.138 | 0.30 6.31
10 175 0.125 0.25 4.59 24 280 0.153 | 0.35 7.03
11 175 0.138 0.30 5.48 25 280 0.125 | 0.25 5.46
12 175 0.153 0.35 6.14 26 280 0.138 | 0.30 6.45
13 175 0.125 0.25 4.72 27 280 0.153 | 0.35 7.09
14 175 0.138 0.30 5.59 - - - - -
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IV. MATHEMATICAL RELATIONSHIP

The level of impact of the input machining parameters (speed, feed and depth of cut) on the output parameter
(material removal rate) are analysed by statistical regression relationship through the commercial Minitab17
software. Higher level of significance is registered by the second order regression relationship between the
variables than the first order regression which is evident through the values of the R — sg. Both the first and
second order statistical values of R-sq can be viewed from the Table 4.1.

Table 4.1 Statistical relationship between the process variables

Parameter Regression S R-sq R-sq(adj) | R-sq(pred)
MRR First order 0.39688 90.06% 88.76% 86.76%
Second order without self power | 0.402806 90.65% 88.42% 86.15%

The second order regression equation of the material removal rate in terms of input parameter combination is
MRR = - (0.7) + (0.038 x speed) + (13 x feed) + (5 x doc) — (0.61x speed x feed) + (0.203 x speed x doc)
(4.1)

The statistical residual plots through Minitab analysis for the material removal rate are displayed in the Figure
4.1. The best subset regression analysis reveals that the speed is the major influencing factor which contributes
57.8 % ; the parameter depth of cut registered next level influence with 32.6 % whereas the feed rate exhibits

very little amount of influence on the MRR.
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Figure 4.1 Residual plots of material removal rate

V. OPTIMISATION TECHINQUES

Process optimization is the arrangement order to get the adjustment in the process so as to optimize a set of
parameters without violating the inbuilt restrictions. The accepted objectives through this exercise are either to
minimize the cost of the process or to maximize the outcome with effectiveness. In the MATLAB R2017
software, an effort is taken in this paper to evaluate the effectiveness of the optimisation algorithms and also to
forecast of the output variable referring to the input process variables with the optimization algorithms namely,

Particle swarm Optimization, Scatter Search Algorithm, Simulated Annealing Algorithm, Artificial Bee Colony
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Algorithm, Ant Colony Algorithm and Firefly algorithm. Estimating of the optimized material removal rate in
the turning process on the ASTM 48 grey cast iron specimen was performed with the main objective as
maximizing. To analyze the authority of the machining speed, feed and depth of cut over the material removal
tempo through MATLAB R2017 platform, the Elman Back Propagation process is functionalized. 50000
iterations have been initiated in this simulation process. The suitability of all the six algorithms are compared
through the level of in computation which is in the form MSE (mean squared error) occurred rate as the
performance indicator. Figure 5.1 shows the simulation progress of the data training in MATLAB. The accuracy

level of the computation is mentioned in the Table 5.1.
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Figure 5.1 Data training progress of 50000 iterations

Table 5.1 Mean squared error value comparison

Algorithm Mean squared error Ranking
Firefly algorithm 0.000051 1
Ant Colony Algorithm 0.000764 2
Simulated Annealing Algorithm 0.003212 3
Scatter Search Algorithm 0.005372 4
Particle Swarm Optimization Algorithm 0.008319 5
Artificial Bee Colony Algorithm 0.018459 6
Optimization through -
Particle swarm Optimization, Evaluating the
Scatter Search Algorithm, performance of the
Input process parameters Simulated Annealing Algorithm, %  optimization algorithms
Atrtificial Bee Colony Algorithm, based on MSE and
Ant Colony Algorithm and ranking
Firefly Algorithm.
v
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Figure 5.2 Block diagram of Hybridization
Firefly algorithm converges with the minimum value of mean squared error (0.000051) than the other
algorithms in this simulation. The ranking of the algorithms with reference to the performance also noted
through the Table 5.1. The new approach of hybridization with regression equations as clause for simulation is
shown in the Fig. 5.2. In addition to that to form a soft curve with closer interval values of the material removal
rate, the parameters selected was further division with 0.01 mm step value for depth of cut, 16.8 rpm step in
speed and 0.0112 mm / rev step in tool feed. So computed results of the Material Removal Rate through this
Regression integrated Firefly Algorithm method for all combination of the parameter including the step values
chosen to the programme are listed in the Table 5.2 to Table 5.6.
Table 5.2 MRR for the speed 112, 128.8 rpm Vs feed 0.125, 0.1362, 0.1474, all depth of cut

v =112 rpm v =128.8 rpm
DOC f=0.125 | f=0.1362 | f=0.1474 DOC f=0.125 | f=0.1362 | f=0.1474
MRR 1 MRR 2 MRR 3 MRR 1 MRR 2 MRR 3

0.25 3.234 4.729 4.966 0.25 4.932 4.847 5.095
0.26 3.515 4.550 4.420 0.26 4.041 4.727 4.637
0.27 3.796 4.328 3.942 0.27 4.354 4.523 4.169
0.28 4.072 4.127 3.608 0.28 4.668 3.926 3.816
0.29 4.352 3.724 3.660 0.29 4.101 4.240 3.499
0.3 3.863 4.003 4.019 0.3 4.039 4.004 3.811
0.31 3.861 4.281 4.281 0.31 4.046 4.106 4.122
0.32 3.825 3.960 4.639 0.32 4.016 4.175 4.892
0.33 3.835 4.166 4.800 0.33 4.029 4.470 4.746
0.34 3.820 4.174 4.495 0.34 4.073 4.509 5.060
0.35 3.829 4.166 4771 0.35 4.142 4519 5.374

Table 5.3 MRR for the speed 145.6, 162.4 rpm Vs feed 0.125, 0.1362, 0.1474, all depth of cut

v =145.6 rpm v =162.4 rpm
DOC f=0.125 | f=0.1362 | f=0.1474 DOC f=0.125 | f=0.1362 | f=0.1474
MRR 1 MRR 2 MRR 3 MRR 1 MRR 2 MRR 3

0.25 5.400 4.975 5.371 0.25 5.960 5.134 5.870
0.26 4.503 4.890 4.991 0.26 5.420 5.068 5.659
0.27 4.847 4.679 4.432 0.27 5.283 4.815 5.012
0.28 4.297 4.340 4.051 0.28 4.529 4.689 4.450
0.29 4.265 4.685 3.833 0.29 4.353 4.419 4.103
0.3 4191 4171 4178 0.3 4.330 4.366 4.483
0.31 4.221 4.239 4.522 0.31 4.395 4.341 4.865
0.32 4.170 4.438 4.868 0.32 4.333 4.677 5.240
0.33 4.223 4781 5.217 0.33 4.398 5.064 5.626
0.34 4.341 4.829 5.564 0.34 4.609 5.173 6.002
0.35 4.448 5.022 5.912 0.35 4.812 5.565 6.387
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Table 5.4 MRR for the speed 179.2, 196 rpm Vs feed 0.125, 0.1362, 0.1474, all depth of cut

v=179.2 rpm v =196 rpm
DOC f=0.125 | f=0.1362 | f=0.1474 DOC f=0.125 | f=0.1362 | f=0.1474
MRR 1 MRR 2 MRR 3 MRR 1 MRR 2 MRR 3

0.25 6.195 5.395 6.320 0.25 6.302 5.834 6.527
0.26 5.810 5.350 6.201 0.26 6.070 5.883 6.353
0.27 5.653 5.030 5.744 0.27 5.959 5.526 5.965
0.28 4.739 4.981 4.951 0.28 4.919 5.203 5.128
0.29 4.461 4577 4.835 0.29 4.597 4731 5.128
0.3 4.472 4.534 4721 0.3 4611 4.641 4.902
0.31 4.543 4.433 5.137 0.31 4.676 4.533 5.348
0.32 4.468 4.873 5.551 0.32 4.606 5.059 5.797
0.33 4.628 5.317 5.965 0.33 4.907 5.572 6.245
0.34 4.903 5.564 6.381 0.34 5.227 5.931 6.696
0.35 5.184 5.983 6.794 0.35 5.554 6.193 6.317

Table 5.5 MRR for the speed 212.8, 229.6 rpm Vs feed 0.125, 0.1362, 0.1474, all depth of cut

v =212.8 rpm v =229.6 rpm
DOC f=0.125 | f=0.1362 | f=0.1474 DOC f=0.125 | f=0.1362 | f=0.1474
MRR 1 MRR 2 MRR 3 MRR 1 MRR 2 MRR 3

0.25 6.341 6.265 6.615 0.25 6.323 6.499 6.659
0.26 5.719 6.398 6.379 0.26 5.866 6.620 6.380
0.27 6.202 6.206 5.970 0.27 6.381 6.554 5.925
0.28 5.069 5.364 5.113 0.28 5.172 5.464 5.073
0.29 4.755 4.980 5.234 0.29 4.921 5.267 5.315
0.3 4.759 4.852 5.013 0.3 4.924 5.174 5.067
0.31 4.797 4.726 5.496 0.31 4.917 5.120 5.585
0.32 4.793 5.341 5.982 0.32 5.014 5.845 6.101
0.33 5.206 5.862 6.462 0.33 5.506 6.173 6.615
0.34 5.581 6.176 6.948 0.34 5.913 6.325 6.328
0.35 5.867 6.293 6.288 0.35 6.069 6.352 6.258

Table 5.6 MRR for the speed 263.2, 280 rpm Vs feed 0.125, 0.1362, 0.1474, all depth of cut

v =263.2 rpm v =280 rpm
DOC f=0.125 | f=0.1362 | f=0.1474 DOC f=0.125 | f=0.1362 | f=0.1474
MRR 1 MRR 2 MRR 3 MRR 1 MRR 2 MRR 3

0.25 6.301 6.611 6.675 0.25 6.295 6.724 6.685
0.26 5.945 6.703 6.391 0.26 5.925 6.720 6.441
0.27 6.497 6.692 5.879 0.27 6.543 6.674 5.868
0.28 5.244 5.498 5.086 0.28 5.376 5.381 5.237
0.29 5.096 6.049 5.420 0.29 5.542 6.001 5.588
0.3 5.111 5.475 5.656 0.3 5.627 5.779 5.793
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0.31 5.051 5.608 5.603 0.31 5.472 6.082 6.099
0.32 5.264 6.246 6.154 0.32 5.953 6.497 6.079
0.33 5.798 6.355 6.707 0.33 6.282 6.538 6.696
0.34 6.158 6.414 6.284 0.34 6.395 6.496 6.216
0.35 6.192 6.394 6.240 0.35 6.356 6.436 6.240

The duration of Firefly integrated with Regression relations availed 621.64 pulses to compute. The scatter plots

formation through for the above results are shown for user references in the following Figures 5.3 to Figure 5.10
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Figure 5.3 MRR plots of speed 112 rpm & feed 0.125, 0.1362, 0.1474 mm / rev

Scatterplot of DOC vs MRR 1, MRR 2, MRR 3 Speed 128.8 rpm
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Figure 5.4 MRR plots of speed 128.8 rpm & feed 0.125, 0.1362, 0.1474 mm / rev
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Scatterplot of DOC vs MRR 1, MRR 2, MRR 3 Speed 145.6 rpm
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Figure 5.5 MRR plots of speed 145.6 rpm & feed 0.125, 0.1362, 0.1474 mm / rev

Scatterplot of DOC vs MRR 1, MRR 2, MRR 3 Speed 162.4 rpm
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Figure 5.6 MRR plots of speed 162.4 rpm & feed 0.125, 0.1362, 0.1474 mm / rev

Scatterplot of DOC vs MRR 1, MRR 2, MRR 3 Speed 179.2 rpm
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Figure 5.7 MRR plots of speed 179.2 rpm & feed 0.125, 0.1362, 0.1474 mm / rev
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Figure 5.8 MRR plots of speed 196 rpm & feed 0.125, 0.1362, 0.1474 mm / rev

Scatterplot of DOC vs MRR 1, MRR 2, MRR 3 Speed 212.8 rpm
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Figure 5.9 MRR plots of speed 212.8 rpm & feed 0.125, 0.1362, 0.1474 mm / rev

Scatterplot of DOC vs MRR 1, MRR 2, MRR 3 Speed 229.6 rpm
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Figure 5.10 MRR plots of speed 229.6 rpm & feed 0.125, 0.1362, 0.1474 mm / rev
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Scatterplot of DOC vs MRR 1, MRR 2, MRR 3 Speed 280 rpm
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Figure 5.11 MRR plots of speed 280 rpm & feed 0.125, 0.1362, 0.1474 mm / rev

V1. RESULTS AND CONCLUSIONS

For chosen experimental parameters with the selected level, Second order without self power relationship
between the input, output variables is statistically significant. Firefly Algorithm converges with minimum MSE
towards optimising than the others (Particle swarm Optimization, Scatter Search Algorithm, Simulated
Annealing Algorithm, Artificial Bee Colony Algorithm, Ant Colony Algorithm). Programming with the
regression equation relationship as condition for the further simulation and estimating the outcome, the accuracy
level in computation is improved and tuned to the finest level for the set of values. Speed is the major
influencing factor which contributes 57.8 %; the parameter depth of cut registered next level influence with 32.6
% whereas the feed rate exhibits very little amount of influence on the MRR. The optimum value of MRR is
6.948 mm® / sec for the speed 212.8 rpm, 0.1474 mm / rev feed, 0.34 mm depth of cut combination.
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