

50 | P a g e

Secure Smart Home Using MQTT Protocol

An Internet of Things Application
P. Sushma

1
, Prof. V. Hara Gopal

2
, Prof. M. V. Ramana Murthy

3

1
Faculty of Science,

 2
Department of Statistics,

 3
Department of Mathematics,

Osmania University, Hyderabad (India)

ABSTRACT: Today, Smart homes is a revolutionary buzz word in the residential space. Smart homes mean a smart living where all the

gadgets at home can communicate with each other and can also be operated remotely via a smart phone application. Increasing demand for

smart homes are equally increasing the security concerns. A smart device compromising on security can allow hackers to win the control of

devices. MQTT (message queuing telemetry transport) is a publish/subscribe based, light weight messaging, easy to use, internet of things

protocol. They allow devices to communicate at a faster rate but provide very few security mechanisms. Security in MQTT can be provided in

Network layer by using VPN or secure networks, Transport layer by using TLS/SSL and Application layer by using credentials like username

and password. This paper aims at providing secure communications using Common division method to encrypt payload in application layer

without using full-fledged transport encryption. This is a substitution based block cipher encryption technique, uniquely designed for binary

data. This symmetric key encryption technique can be applied on any type of file. Hence it is computationally feasible to apply it on device to

device communications. This enhances the security in Smart homes using MQTT by retaining its speed.

Keywords: Encryption, IOT application, Secure smart homes, MQTT protocol, Common division method, Network security, Decryption.

I. INTRODUCTION

Recent surge in designing the electrical goods or devices to
connect to internet and accelerating trend of smart devices
flooding residential spaces has laid the ground for the evolution
of the smart homes. With the increasing capability to
communicate among themselves, the smart devices at home
required a greater control. Many applications are developed to
control these smart devices remotely. Similarly, many protocols
are design for Machine to machine communications. With a
stack of protocols available for M2M (machine to machine)
communications, MQTT (Message queuing telemetry
transport) has took the lead role as it is a simple publish /
subscribe protocol with a light weight messaging. It is faster in
communications when compared to other protocols. Due to its
minimal packet overhead, MQTT is preferred over other
protocols and traditional client/server exchanges. It is an
“Internet of Things" connectivity protocol. MQTT uses TCP
for communications. TCP/IP‟s port 1883 and 8883 is
registered, for using MQTT and MQTT over SSL respectively.
These characteristics of MQTT make it ideal for use in
constrained environments. Few of the areas where this MQTT
is used are Expensive, unreliable, low bandwidth networks and
embedded device with limited memory resources or processor.

II. MQTT PROTOCOL

A MQTT Publisher is a client which sends a message to
another client and the MQTT Subscriber is a client which
receives a message. The message published by a client can be
subscribed by another client or the broker can publish it to
client. Heart of the publish/subscribe protocol is MQTT broker
or Server and it is responsible for authentication and
authorization of clients, receiving messages published by
clients as topics, filtering them, deciding the interested
subscriber, sending the messages to them, holding the session
of all persistent clients including subscriptions and missed
messages. It is like a central hub through which every message
passes. Therefore, the MQTT broker should be able to integrate
into backend systems, should be highly scalable, easy to

monitor and failure-resistant. Subject based filtering of
messages is done by MQTT broker using topics. Topic is a
hierarchical structured string or key that identifies the
information channel to which the client (Publisher) publishes
the payload data. Similarly, the client (Subscriber) uses the
topic to identify the information channels on which they want
to subscribe the published information.

MQTT uses command messages for communications.
These command messages when transferred between client to
broker and vice versa, requires secure means of
communication. Security from eves dropping and attackers
using MQTT can be provided in two layers- the transport layer
and the application layer. TLS (Transport Layer Security) and
SSL (Secure Sockets Layer) can ensure secure communications
but has the overhead of handshaking mechanism between the
two devices to establish a connection and to negotiate various
parameters. If the connections are used for long durations
TLS/SSL serves the purpose but for the smaller messages this
significantly increases the CPU usage and communication
overhead. So, for any type of communications between the
devices we opt for encrypting the payload in application layer.

A. MQTT Quality of Services(QoS)

MQTT uses three QoS‟s for messages to publish or
subscribe. They are as follows:

QoS 0: "At most once", Underlying TCP/IP network makes
the best efforts to deliver these messages. Message may be lost
or duplicated while using this type of service. for example:
ambient sensor data, where a message lost or duplicated does
not cause much impact as the next message will be published
immediately.

QoS 1: "At least once", here message deliver is assured but
sometimes cause duplicates messages to arrive.

QoS 2: "Exactly once", here messages are assured to be
delivered exactly once. for example: billing systems, here lost
or duplicate messages may lead to incorrect charges to be
applied.

MQTT uses a minimal 2 Bytes transport overhead and less
protocol exchanges there by reducing the network traffic. Last

51 | P a g e

Will and Testament feature in this protocol enables interested
clients to be notified about the abnormal disconnection.

B. MQTT message format:

MQTT message contains a message header of 2 bytes.
Sometimes it could be of variable length too. First byte of the
header contains message type and three flags - Duplicate flag,
QoS and RETAIN flags. Second byte contains remaining
length field. The data values are represented in big endian
notation. First part of the header is Message types. There are
different message types available for communications. Few of
them to mention are as follows:
CONNECT: This is used to connect to the server or broker.
CONNACK: It is a connect acknowledgment.
PUBLISH: Messages sent to other clients, published as topics
to broker.
PUBACK: It is a publish acknowledgement.
PUBREC: Publish received is used to intimate assured
delivery.
PUBREL: Publish release is also used in assured delivery.
PUBCOMP: Publish complete used in assured delivery.
SUBSCRIBE: Used by client to request for subscription from
broker.
SUBACK: Subscribe acknowledgment used as confirm to the
subscribers receiving of message.
UNSUBSCRIBE: Used by client to unsubscribe the request.
UNSUBACK: Used to unsubscribe acknowledgement.
PINGREQ: PING request.
PINGRESP: PING Response.
DISCONNECT: Client uses it to disconnect.

MQTT CONNECT message is initiated by client to connect to
the server or broker. Broker waits for the stipulated time for the
connection to be established but if the client is unable to make
a connect the broker or the server rejects the connection. This is
done by the broker using CONNACK message to avoid the
malicious client from slowing down the broker.

CONNECT message contains the clientID, cleansession,
username, password, lastwilltopic, lastwillQos,
lastwillMessage, lastwillretain, keepalive fields. Username and
password fields are used to authorize and authenticate the
client.

MQTT PUBLISH message contains the PacketID, TopicName,
QoS, retain flag, payload and duplicate flag fields. This
payload is the actual content of the message and this paper aims
at encrypting this payload using Common division method.

End to end encryption can be provided using common division
method for the MQTT PUBLISH payload and CONNECT
payload in application layer. This method works efficiently
even in an untrusted environment. Payload of the MQTT
publish message is encrypted and the remaining meta data is
not considered for encryption. This doesn‟t require any
decryption mechanism at MQTT broker. This enables MQTT
Broker to just enroute the payload to subscriber without
knowing the content of the payload. Common division method
works with binary data and since the MQTT payload is in
binary representations, data conversion mechanism is not
required.

III. ENCRYPTION USING COMMON DIVISION METHOD

The payload published from publisher to broker and the
payload received from broker to subscriber remains encrypted
by using common division method. Payload encrypted at
publisher will be decrypted at the subscriber only. MQTT
broker which can also be a public broker will not be able to
read or access the contents of the payload as it is encrypted and
at the same time will be able to transfer the payload without
any difficultly as the meta data is not encrypted. Key can be
accessed to only the trusted clients for decryption. MQTT
client can apply this encryption to any topic irrespective of any
broker implementation. Even when we don‟t use TLS services
of transport layer for security, this mechanism of payload
encryption helps us in securing the data from unauthorized
access.

Encryption can be done using two mechanisms: Public and
private key encryption, also called as asymmetric encryption
and the secret key encryption, also called as symmetric key
encryption.

 Public and private key encryption uses two keys for

encryption and decryption. Public key is used for encryption.
And private key is used for decryption. This provides
authentication and confidentially to the payload published. The
public key is announced to all the other clients but the private
key is kept confidentially with the client. Decryption cannot be
done with the known public key, client interested in the
payload should have the private key for decryption. Only
trusted clients can be shared with the private key. This ensures
that no other client other than the original user is decrypting the
payload.

Secret key encryption uses one key for both the encryption
and decryption. “Fig. 1”, explains the process of encryption
using on MQTT PUBLISH payload using common division
method which is a secret key encryption method. This key
should be carefully shared between the clients for the future
use. Though a common key can be used for all the topics
published, it‟s always advised to use a separate key for each
topic. Because a key compromised can cause only one topic to
be hacked but if all the topics use the same key, all the topic are
having the threat of in secure communications.

Figure 1. End to end encrytion using common divison method

A. Encryption algorithm:

Let S, Binary stream of data be divided into „m‟ number of
equal n sized blocks. Last block could be n bits or even less
and is not used in encryption process. Let this last block be lb,
where 0<=lb<n.

52 | P a g e

Step 1: Let b1, b2,…bp be „p‟ consecutive „n‟ bit blocks such
that „m‟ is divisible by „p‟.

Step 2: Let „d‟ be the calculated common divisor of „k‟ bits
maximum(1<=k<=n), of those „p‟ bit blocks. Let „r‟ be the
integer part of n/p.

Step 3: chose n bit temporary key randomly.

Step 4: Let e1, e2,….ep be temporary „p‟ number of effective
keys generated after „r‟ bit circular left shift on temporary key.

Step 5: ei and quotient of bi/d are XORed and appended
consecutively. Where i=1 to p

Step 6: „k‟ bit representation of „d‟ and the results of step 5 are
appended to get the encrypted text.

Step 7: next consecutive „p‟ number of blocks are selected and
the above process is continued. The result of this is appended to
the previously generated encrypted text, until all „m‟ number of
blocks are involved.

Step 8: Unchanged block „lb‟ is appended at the front of the
concatenated result of step 7. This generates the encrypted
text.

B. Decryption algorithm:

The size of each block, the size of temporary key „n‟, number
of consecutive blocks used at a time „p‟, number of bits to
represent the maximum common divisor „k‟, length of
unchanged block „n1‟ can be obtained from the key.

Step 1: From „n‟ and „p‟, the number of bits circularly left
shifted can be obtained, Let „r‟ which produces effective keys
e1,e2,e3,……ep from temporary key.

Step 2: „lb‟ the unchanged block is obtained from the first „n1‟
number of bits from the encrypted text.

Step 3: Common divisor is produces from the next „k‟ bits, say
„d‟ of next „p‟ number of consecutive „n‟ bit blocks, let them be
d1, d2, ….dp.

Step 4: Block „i‟ is generated by performing XOR operation
between ei and di block. Where i=1 to p.

Step 5: Multiply „d‟ with each of the „p‟ number of „n‟ bit
blocks example: (block1*d), (block2*d), ……(blockp*d)
arrange the resultant product blocks consecutively as blocks in
the encrypted text. this generates the first „p‟ number of „n‟ bit
blocks of decrypted text.

Step 6: Next „p‟ number of consecutive blocks undergo the
same process from step 3 to step 5. Append the next part of the
decrypted text with the previous blocks till all the blocks are
involved in the process.

Step 7: Original plain text is generated by concatenating the
„lb‟ to the decrypted text.

C. Example: Encyption using Common Division method.

Let the payload of the MQTT PUBLISH message be S =
011011011101110001001011100011010011. Let us encrypt it
using Common division method.

Step1: let us divide this binary stream of data into four 8 bit
blocks. So, n=8 and m=4.
Consider p=2, so two consecutive blocks b1, b2 are considered.
Last 4 bits remain unchanged block. And this does not involve
in encryption process. So n1=4

Step 2: Let‟s calculate the number of bits to represent
maximum common divisor d in k. for this payload k=2.
Say r, be the Integer part of n/p. n=8 and p=2, r=4.

Step 3: Generate a random number of length = 8. Let the
temporary key be 11011011.

Step 4: Four bits circular left shift generates two effective keys
e1, e2.
e1=10111101 and e2=11011011.

Step 5: Perform division operation between bp and d and this
result is XORed with effective key ep.

b1/d = 01101101/01=01101101
b2/d = 11011100/01=11011100

(b1/d) XOR e1=11010000
(b2/d) XOR e2=00000111

Step 6: Append the results to get the cipher text of first two
blocks of plain text.
It is 011101000000000111

Step 7: Similarly continue with the next two consecutive blocks
to get the following binary stream: 11010010011001101

Step 8: The last 4 unchanged bits are appended at the front of
two concatenated binary stream.
This gives final encrypted text of the payload as
0011011101000000000111111010010011001101

D. Example: Decryption using Common Division method.

From the key structure we acquire:
Size of each block n=8
Number of consecutive blocks used at a time p=2
Number of bits to represent maximum common divisor (d) k=2
Length of unchanged block (lb) n1=4 and temporary key.

Step 1: From n and p, we get the number of bits circularly left
shifted, r=2 and the temporary key to get the effective keys ep.
If random number = 11011011, the effective keys
e1=10111101, e2=11011011.

Step2: Now consider the first 4 bits from cipher test and store it
in lb. so the contents of lb=0011.

Step 3: Then by n and k we acquire the value of d for next p
number of n bit blocks and consider (n*p) number of bits from

53 | P a g e

the rest and differ two 8 bit blocks. The value of d for first two
8 bit blocks is 01 and the blocks are 11010000, 00000111.

Step 4: Next XOR the keys e1,e2 with two 8 bit blocks
consecutively. The XOR operation and results are as follows
(11010000) XOR (10111101) = 01101101
(00000111) XOR (11011011) = 11011100

Step 5: The results are individually multiplied by value of „d‟.
This is as follows: 01101101*01=01101101
11011100*01=11011100
The resultant block are the first two 8 bit blocks b1, b2 of
payload.
It is 0110110111011100

Step 6: This generates only part of payload but the above
process should be performed for the remaining chipper text to
get the complete payload. Say 111010010011001101, Generate
d say 11 for two 8 bit blocks and then XOR the keys with two
blocks and then multiply the result by d and get rest two blocks
of the payload. Say b3, b4.
b3=01001011 and b4=10001101.
This is 0100101110001101

Step 7: Then append the new results (b3,b4) with (b1,b2).
Contents of lb (unchanged block) are appended at the end. This
way we can recover the whole payload which is as follows:

011011011101110001001011100011010011

IV. CONCLUSION

Common division method encryption and decryption can be
resource intensive on constrained devices. It provides secure
means of communication between the clients by avoiding
unauthorized access and eves dropping. This encryption is well
suited when the user can‟t use Transport layer TLS/SSL and at
the same time do not want to transfer the messages in plain
text. This method can be further enhanced to apply encryption
methods between client and the broker rather than making it
end to end. Broker can decrypt the message and send to the
subscribers. Client can use both the payload encryption and
transport layer TLS encryption in conjunction for higher level
of security as payload encryption still has the threat of man in
middle attack and message replay.

V. REFERENCES

[1] Bandyopadhyay S.; Bhattacharyya A., "Lightweight
Internet protocols for web enablement of sensors using
constrained gateway devices," Computing Networking
and Communications (ICNC), 2013 International
Conference on , vol., no., pp.334,340, 28-31 Jan. 2013.

[2] Colitti, Walter, Kris Steenhaut, and Niccolò De Caro.
"Integrating wireless sensor networks with the web."
Extending the Internet to Low power and Lossy Networks
(IP+ SN 2011) (2011)

[3] Xu Li, Rongxing Lu, Xiaohui Liang and Xuemin
(Sherman) Shen, University of Waterloo Jiming Chen,
Zhejiang University Xiaodong Lin, University of Ontario
Institute of Technology “Smart Community: An Internet
of Things Application”

[4] Ullas B S , Anush S , Roopa J , Govinda Raju M
“Machine to Machine Communication for Smart Systems
using MQTT” International Journal of Advanced
Research in Electrical, Electronics and Instrumentation
Engineering (An ISO 3297: 2007 Certified Organization)
Vol. 3, Issue 3, March 2014.

[5] S.Pandikumar, R.S. Vetrivel 1721 “Internet of Things
Based Architecture of Web and Smart Home Interface
Using GSM” International Journal of Innovative Research
in Science, Engineering and Technology Volume 3,
Special Issue 3, March 2014 2014 International
Conference on Innovations in Engineering and
Technology (ICIET‟14) On 21st & 22nd March
Organized by K.L.N. College of Engineering, Madurai,
Tamil Nadu, India M.R. Thansekhar and N. Balaji:
ICIET‟14

[6] Ming Wang; Guiqing Zhang; Chenghui Zhang; Jianbin
Zhang; Chengdong Li, "An IoT-based appliance control
system for smart homes," Intelligent Control and
Information Processing (ICICIP), 2013 Fourth
International Conference on , vol., no., pp.744,747, 9-11
June 2013.

[7] Min Chen, Jiafu Wan,Gonzalez S., Xiaofei Liao, Leung,
V.C.M., "A Survey of Recent Developments in Home
M2M Networks," Communications Surveys & Tutorials,
IEEE , vol.16, no.1, pp.98,114, First Quarter 2014.

[8] Karia, D.C., Adajania, V., Agrawal M., Dandekar S.,
"Embedded web server application based automation and
monitoring system," Signal Processing Communication
Computing and Networking Technologies (ICSCCN),
2011 International Conference on , vol., no., pp.634,637,
21-22 July 2011

[9] Sujoy Dasgupta, Sanjit Mazumder, Prof. (Dr) Pranam
Paul “Implementation of Information Security based on
Common Division” IJCSNS, VOL.11 No.2, February
2011

[10] Mandal J. K., Mal S., Dutta S., “A 256 Bit Recursive Pair
Parity Encoder for Encryption”, accepted for publication
in AMSE Journal, France, 2003

[11] Dutta S., Mal S., “A Multiplexing Triangular Encryption
Technique – A move towards enhancing security in
ECommerce”, Proceedings of IT Conference (organized
by Computer Association of Nepal), 26 and 27 January,
2002, BICC, Kathmandu.

