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ABSTRACT 

The development of the hardware systems has incurred various types of delays such as processing and 

transmission delays. Such delay may be due to the effect of tolerances of electronic components which were used 

while developing the system. Such time delay parameters must be implemented in the transfer function of the 

system so as to identify the correct cause of dynamic behavior of the system which in turn affects the stability of 

the system. For the development of the accurate system it is required to consider the condition for the global 

robust asymptotic stability. Criteria for verifying robust stability are formulated as feasibility problems over a 

set of frequency dependent linear matrix inequalities. The criteria can be equivalently formulated as Semi-

Definite Programs (SDP) using Kalman-Yakubovich-Popov lemma. Therefore, checking robust stability can be 

performed in a computationally efficient fashion. The Lyapunov-Krasovskii approach is definitely the most 

popular method to address this issue and many results have proposed new functionals and enhanced techniques 

for deriving less conservative stability conditions. The paper surveys the techniques used for developing the 

stable system from the various literatures published recently and draws the result that which method is best to 

develop a reliable and stable systems. 
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I.  INTRODUCTION 

It is well-known that the manifestation of time delays in a system can lead to performance degradation and even 

destabilization of the system. For systems in which the signal transmission time delays among sensors, 

compensators and actuators are small, compared to the time constant of the overall system, the effect of time 

delay is often not significant enough to cause serious problems. This is not the case, however, within the context 

of large-scale distributed and networked systems, where the effects of time delays can be very significant. Time 

delay system is a subclass of infinite dimensional systems that has been frequently employed since it can model 

commonly arising transport and propagation phenomena. For such systems, time-delay robustness must be 

explicitly addressed to ensure that system-level performance isachieved in a robust manner. Time-delay 

robustness is often studied for situations in which the delay is uncertain but remains constant throughout time. 

Delays can be encountered in many processes such as biology, chemistry, economics, and population dynamics 

[2] as well as in networks [3]. However, delays are the origin of performance and stability degradation, which 

thus have motivated a lot of work. While much research has been done and stability criteria have been derived 

for systems with uncertain constant time-delays, the recent emphasis has been put on the scenario where the 
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time delay is time varying. The significance of such problems is tied to the recent ample interest in designing 

control algorithms for large-scale networked systems. For applications within the scope of large-scale 

distributed and networked systems, such as the regulation of internet traffic and control over networked 

communication channels. Other engineering applications where time-varying delays appear include real-time 

implementation of control systems and control of fuel injection systems. The results obtained while the research 

work by authors have been extended to time varying delay systems either using adapted Lyapunov-Krasovskii 

[9, 10, 11, 12, 13, 14, 15, 16, 17] or robustness tools [18, 19, 20]. These latter methodologies often require, 

explicitly or implicitly, the delay-free system to be stable, which is a rather important restriction. Time-varying 

delay systems are expressed in terms of Linear Matrix Inequalities (LMIs) which may be solved efficiently with 

Semi-Definite Programming (SDP). 

 

II. RELATED WORK 

This section presents the related work previously produced by the researchers. Basically the methodologies for 

achieving the stability and controllability have been discussed below. 

Jin-Hoon Kim presented the stability of linear systems with a time-varying delay using Lyapunov Krasovskii 

functional (LKF) approach. The authors main contribution to this paper is to present a result expressed in the 

form of LMI which overcomes the upper bound 

 

using a new simple LKF. The basic ideas in constructing a new LKF are adoption of the cross terms of variables 

and quadratic terms multiplied by a higher degree scalar 

function. In recent works (Park & Ko, 2007; Shao, 2009; Zhu  & Yang, 2010), the property of first order convex 

combination property was used. Similarly, in this paper, the property of quadratic convex function, namely 

Lemma 1, is used. Also, Lemma 2 gives an upper bound of the integral of quadratic function multiplied by a 

1st/2nd degree scalar function. The author concluded that by considered the stability of time-delayed linear 

systems with a time-varying delay in the case of simple LKF approach without delay decomposition, the 

allowable maximum size of delay had a fixed bound for years. To overcome this, the author constructed a new 

simple LKF which has the cross terms of variables and quadratic terms multiplied by a higher degree scalar 

function. And then, using the property of a quadratic convex function and an upper bound of the integral of 

quadratic multiplied by a scalar function, author derived a delay-dependent stability criterion in the form of 

LMIs. Finally, by two well-known examples, author presented the usefulness of the result. 

Yassine Ariba et al. presented an original approach: the quadratic separation. For this the author exploited the 

delay operator properties to provide delay range stability conditions. In particular, L2-norm of delay-dependent 

operators is computed so as to reduce the conservatism of the approach. 

Moreover, the main result is able to assess the stability of non-small delay systems, i.e., it can detect a stability 

interval for systems that are unstable without any delay. The quadratic separation provides a fruitful framework 

to address stability of non-linear and uncertain systems [21, 22]. Recent studies [8] have shown that such a 

framework reduces significantly the conservatism of the stability analysis of time-delay systems with constant 

delay. In this paper authors extend this method to time varying delay systems, which involves the development 

of results for a new set of operators. This result includes two conditions: a matrix inequality related to the lower 



 

256 | P a g e  
 

block of the feedback system and an inner product that states an integral quadratic constraint (IQC) on the upper 

block. The author concluded that using an augmented state, which emphasizes the relation between h and (  ,  

), the resulting criteria have been expressed in terms of a convex optimization problem with LMI constraints. 

Finally, numerical examples showed that this method reduced conservatism and improve the maximal allowable 

interval on the delay. 

E. Fridman et al. says that in the researched work cited, 

descriptor model transformation has been introduced. The authors compare methods under different 

transformations and show the advantages of the descriptor one. Authors also obtained new delay-dependent 

stability conditions for systems with time varying delays in terms of linear matrix inequalities. Authors also 

refine results on delay-dependent 

control and extend them to the case of time-varying 

delays. Numerical examples illustrated the effectiveness of the method. Previously two main approaches for 

dealing with the stability of systems with time-varying delays was available. The first is based on Lyapunov 

Krasovskii functionals and the second is based on Razumikhin theory. The authors considered two main cases of 

time-varying delays: 

1. differentiable uniformly bounded delays with delay-derivatives bounded by d < 1; and 

2. continuous uniformly bounded delays. 

Author says to the best of their knowledge, the Razumikhin approach was the only one that was able to cope 

with the second case, which allows fast time-varying delays. In his paper the author shed more light on the 

conservatism of the various model transformations and shows the advantages of the descriptor one. Authors 

revealed the sources for the conservatism of delay-dependent stability methods and the advantages of the one 

under descriptor transformation have been demonstrated. The maximum values of h that still allow stability 

via state-feedback are depicted in figure 1 as a function of d. 

 

 

 

 

 

 

 

 

 

Fig.1: The stabilizability bounds for the time-delay h as a function of d. 

In figure 2 authors describe the minimum achievable value of    as a function of d for  

  and for  and  . The latter value of h is quite close to the maximum achievable value of 

h = 1.408. 
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Fig.2: The minimum achievable attenuation level as a function of d for h =1:38. 

Two types of results for systems with time-varying delays have been derived: delay-dependent/rate-dependent 

and delay-dependent/rate-independent. In both cases, the new stability results are less restrictive than the 

existing results (Kim 2001), obtained for the first (less robust) case. The authors results for the second case, 

which includes fast-varying delays, seem to be less conservative than those of Fridman and Shaked. 

 

III.  RESULT 

The system presented above is simulated in Matlab 2014a version and the outputs are obtained. The values of h 

1 and h2 have been changed the test of stability has been performed as shown below: 

Table.1: Admissible upper bound h2 for various h1, for the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the delay is constant and h1 = h2 = 1 and h1 = h2 = 5, an eigenvalue analysis shows that the maximal 

acceptable constant sampling period Tm = TM = T for which the system remains asymptotically stable is T = 0.76 

and T0.21, respectively. It has been also noted that the summation inequality is not conservative when h1 = h2 = 

1. Hence, the conservatism in this case comes from the approximation the uncertain system. 

 

S. No.  h1  h2 

   

1.  1  21 

     

2. 3 23 

   

3.  5  25 

   

4.  7  27 

   

5.  9  29 

     

6. 11 31 
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IV. CONCLUSION 

In this technical note the summation inequality presented is relevant for the stability analysis of discrete time 

systems with interval time-varying delays. 
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