
 

1331 | P a g e  

 

Curvelet Transform and Adaboost Technique for HSI 

Feature Extraction 

Y.Vasudeva rao
1
, T.Geetamma

2
, 

1
ECE Department, M.Tech Scholar, DECS, GMRIT, (India) 

2
ECE Departments,  AssistantProfessor, GMRIT, (India) 

 

ABSTRACT 

Generally, Spectral component extraction methods are connected to the HSI information shape 

straightforwardly. This paper shows a novel calculation for HSI include extraction by abusing the curvelet 

transformed space by means of a moderately new unearthly component preparing procedure—solitary range 

examination (SSA). Utilizing the support vector machine classifier, trial comes about have demonstrated that 

elements separated by SSA on curvelet coefficients have better execution regarding grouping precision over 

components removed on wavelet coefficients. Since the proposed approach primarily depends on SSA for 

include extraction on the ghostly measurement, it really has a place with the ghastly element extraction 

classification. Subsequently, the proposed strategy has likewise been contrasted and some cutting edge 

otherworldly element extraction procedures to demonstrate its viability. Furthermore, adaboost technique is 

used for classification and denoising of images. By which we can obtain good feature extraction of images. 

Keywords:HSI, SVM, Curvelet Transform, Single Spectrum Analysis 

 

I. INTRODUCTION 

Hyperspectral  imaging (HSI) provides data with ahigh-resolution spectrum over 2-D images, leading 

topowerful capabilities related to classification in many applications,such as remote sensing. The wide range 

covered by thespectral information, from visible light to near infrared, allowsthe recognition of small 

differential characteristics of the contentin a scene. For that reason, new emerging laboratory-baseddata 

analysis, including food quality, medical, or verification ofcounterfeit goods and documents [1]–[4], is based on 

HSI.The use of the support vector machine (SVM) as a classifierfor HSI applications has been shown to be 

robust and highlyaccurate [5]–[7]. The samples or pixels are evaluated in SVMby means of their respective 

features or spectral bands, whichcan contribute to more robust discrimination as they includeinformation from 

different spectral wavelengths. However, HSIdata are usually prone to noise, which can reduce the 

discriminationability limiting the accuracy in classification tasks. Forthat reason, there is great interest for a 

potential decomposition of the spectral profiles into components in such a way that noisecould be removed or 

mitigated by avoiding particular componentswith high noisy content. In this decomposition context,a 

particularly interesting research area is the use of the empiricalmode decomposition (EMD) technique applied in 

1-Dto the spectral profile of the pixels as briefly evaluated in [8].The EMD is the main part of the Hilbert–

Huang transform,an algorithm for the analysis of nonlinear and nonstationarytime series [9], [10]. EMD 
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decomposes a 1-D signal into afew components called intrinsic mode functions (IMFs) andhas been widely used 

in processing signal applications such asspeech recognition [11].Hence, our aim is to introduce the singular 

spectrum analysis(SSA) technique in a similar way to evaluate its performance forclassification tasks in HSI. In 

this paper, we are also aiming at combining ideas offeature extraction and denoising together for improving 

classificationaccuracy of remote sensing hyperspectral images. Finally , Adaboost technique is applied inorder 

to increase the rate of accuracy.  

 

II. CURVELET TRANSFORM: 

For multi-scale object representation,Curvelets are a non-adaptive technique. Being an extension of 

the wavelet concept, they are becoming popular in similar fields ofscientific computing and image 

processing.By using a basis that represents both location and spatial frequency,wavelets generalize Fourier 

transform. Directional wavelet transforms go further for 2D or 3D signals, by using basis functions that are also 

localized in orientation. From other directional wavelet transforms, a curvelet transform differsas such the 

degree of localization in orientation varies with scale. In particular, fine-scale basis functions are long ridges; 

the shape of the basis functions at scale j is  by  so the fine-scale bases are skinny ridges with a 

precisely determined orientation. 

For representing images (or other functions) which are smooth apart from singularities along smooth 

curves, where the curves have bounded curvature, the curvelets are an appropriate basis. i.e. for images where 

objects in it have a minimum length scale. For cartoons, geometrical diagrams, and text this property holds. The 

edges such images contain appear increasingly straightwhen one zooms in on them. By defining  higher 

resolution curvelets to be more elongated than the lower resolution ones, Curvelets take advantage of this 

property. However, natural images (photographs) do not have this property; they have detail at every scale. 

Therefore,it is preferable to use some sort of directional wavelet transformfor natural images, whose wavelets 

have the same aspect ratio at every scale. 

When the image is of the right type, curvelets provide a representation that is considerably sparser than other 

wavelet transforms. This can be quantified by considering the best approximation of a geometrical test image 

that can be represented using only 'n' wavelets, and analysing the approximation error as a function of 'n'. The 

squared error decreases only as O( for a Fourier transform. For a wide variety of wavelet transforms, 

including both directional and non-directional variants, the squared error decreases as  O( .. The extra 

assumption underlying the curvelet transform allows it to achieve  O( .. 

For computing the curvelet transform of discrete data, efficient numerical algorithms exist. The computational 

cost of a curvelet transform is approximately 10–20 times that of an FFT, and has the same dependence 

of O(  for an image of size  . 

https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Adaptive-additive_algorithm
https://en.wikipedia.org/wiki/Wavelet
https://en.wikipedia.org/wiki/Scientific_computing
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
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2.1. From Classical Wavelet to curvelet Transform: 

Although the DWTs has established an impressive reputation as a tool for mathematical analysis and signal 

processing, it has the disadvantage of poor directionality, which has undermined its usage in many applications. 

transformIn recent years significant progress in development of directional wavelets has been made. To improve 

directional selectivity, complex wavelet is one way. However, the complex wavelet transform has not been 

widely used in the past, since it is difficult to design complex wavelets with perfect reconstruction properties 

and good filter characteristics.By essentially using tensor-product one-dimensional (1-D) wavelets,the 2-D 

complex wavelets are constructed. The directional selectivity provided by complex wavelets (six directions) is 

much better than that obtained by the classical DWTs (three directions), but is still limited. 

In 1999,Candès and Donoho proposed an anisotropic geometric wavelet transform named ridgelet transform 

which is optimal at representing straight-line singularities. Unfortunately, global straight-line singularities are 

rarely observed in real applications. To analyze local line or curve singularities, a natural idea is to consider a 

partition of the image, and then to apply the ridgelet transform to the obtained subimages. This block ridgelet-

based transform, which is named curvelet transform, was first proposed by Candès and Donoho in 2000. Apart 

from the blocking effects, however, the application of this so-called first-generation curvelet transform is limited 

because the geometry of ridgelets is itself unclear, as they are not true ridge functions in digital images. Later, a 

considerably simpler second-generation curvelet transform based on a frequency partition technique was 

proposed by same authors. A variant of the second-generation curvelet transform was proposed recently, to 

handle image boundaries by mirror extension (ME). Previous versions of the transform treated image boundaries 

by periodization. Here, the main modifications are to tile the discrete cosine domain instead of discrete Fourier 

domain and to adequately reorganize data. The computational complexity of the obtained algorithm and the 

standard curvelet transform are same. The second-generation curvelet transform has been shown to be a very 

efficient tool for many different applications in solving partial different equations (PDEs), image processing, 

seismic data exploration and fluid mechanics. In this survey, we will focus on this successful approach and show 

its numericaland theoretical aspects as well as the different applications of curvelets. 

The strength of the curvelet approach is their ability to formulate strong theorems in approximation and operator 

theory, from the mathematical point of view. To representcurve-like edgesthe discrete curvelet transform is very 

efficient. However, the current curvelet systems still have two main drawbacks: 1) they are not optimal for 

sparse approximation of curve features beyond C2-singularities, and 2) the discrete curvelet transform is highly 

redundant. The currently available implementations of the discrete curvelet transform (see www.curvelet.org) 

aim to reduce the redundancy smartly. However, independently from the good theoretical results on N-term 

approximation by curvelets, the discrete curvelet transformis not appropriate for image compression. The 

question of how to construct an orthogonal curvelet-like transform is still open. There have been several other 

developments of directional wavelet systems in recent years with the same goal, namely a better analysis and an 

optimal representation of directional features of signals in higher dimensions. None of these approaches has 

reached the same publicity as the curvelet transform. However, we want to mention shortly some of these 

developments and also describe their relationship to curvelets. 
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This feature is paid by high redundancy. Applications of Gabor wavelets focused on image classification and 

texture analysis. Gabor wavelets have also been used for modeling the receptive field profiles of cortical simple 

cells. Applications of Gabor wavelets suggested that the precision in resolution achieved through redundancy 

may be a relevant issue in brain modeling, and that orientation plays a key role in the primary visual cortex. The 

main differences between steerable wavelets/ Gabor wavelets and other X-lets is that the early methods do not 

allow for a different number of directions at each scale. 

Contourlets, as proposed by Do and Vetterli, form a discrete filter bank structure that can deal effectively with 

piecewise smooth images with smooth contours. This discrete transform can be connected to curvelet-like 

structures in the continuous domain. Hence, the contourlet transform can be seen as a discrete form of a 

particularcurvelet transform.Curvelet constructions require a rotation operation and correspond to a partition of 

the 2-D frequency plane based on polar coordinates; see the section “The Discrete Curvelet Frame.” This 

property is what makes the curvelet idea simple in the continuous case but causes problems in the 

implementation for discrete images. In particular, approaching critical sampling seems difficult in discretized 

constructions of curvelets. Critically sampling is easy to implement for contourlets. The directional filter bank, 

as a key component of contourlets, has a convenient tree-structure, where aliasing is allowed to exist and will be 

cancelled by carefully designed filters..The 3-D extensions of the 2-D contourlets are Surfacelets, that are 

obtained by a higher-dimensional directional filter bank and a multiscale pyramid. They can be used to 

efficiently capture and represent surface-like singularities in multidimensional volumetric data involving 

biomedical imaging, seismic imaging, video processing and computer vision. Surfacelets and the 3-D curvelets 

(see the section “Three-Dimensional Curvelet Transform”) aim at the same frequency partitioning, However, 

these two transforms achieve this goal with different approaches as we described above in the 2-D case.. 

 

III. SINGULAR SPECTRAL ANALYSIS(SSA): 

The singular spectrum analysis(SSA) is a nonparametric spectral estimation method in time series 

analysis.Itcombines the elements of classical time series analysis, multivariate statistics, multivariate geometry, 

dynamical systems and signalprocessing. SSA is a nonparametric method. It tries to overcome the problems of 

finite sample length and noisiness of sampled time series not by fitting an assumed model to the available series, 

but by using a data-adaptive basis set, instead of the fixed sine and cosine of the Blackman-Tukey method. 

There are three basic steps in SSA: i) embedding the sampled time series in a vector space of dimension M; ii) 

computing the MxM lag-covariance matrix CD of the data; and iii) diagonalizing CD. 

Step (i): The time series {x(t): t=1, .......N} is embedded into a vector space of dimension M by 

considering M laggedcopies {x(t-j): j=1,.......M} thereof. The choice of the dimension M is not obvious, but SSA 

is typically successful at analyzing periods in the range (M/5, M). 

Step (ii): One defines the MxM lag-covariance matrix estimator CD. There are three distinct methods used 

widely to define CD. In the BK (Broomhead and King) algorithm, a window of length M is moved along the 

time series, producing a sequence of N'=N-M+1 vectors in the embedding space. This sequence is used to obtain 

the N' x M trajectory matrix D, where the i-th row is the i-th view of the time series through the window. In this 

approach, CD is defined by: 

https://en.wikipedia.org/wiki/Nonparametric_statistics
https://en.wikipedia.org/wiki/Time_series_analysis
https://en.wikipedia.org/wiki/Time_series_analysis
https://en.wikipedia.org/wiki/Time_series_analysis
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Multivariate_statistics
https://en.wikipedia.org/wiki/Signal_processing
http://www.spectraworks.com/Help/btffttheory.html


 

1335 | P a g e  

 

 

In the VG algorithm, CD is estimated directly from the data as a Toeplitz matrix with constant diagonals, i.e., its 

entries Cij depend only on the lag |i-j|: 

 

Burg covariance estimation is an iterative process based on fitting an AR model with a number- of AR 

components equal to the SSA window length. Both the Burg and VG methods impose a Toeplitz structure upon 

the autocovariance matrix whereas the BK method does not. The Burg approach in principal should involve less 

"power leakage" due to the finite length of the time series and should therefore improve resolution. However, 

the Burg estimate can induce significant biases when nonstationarities and very low-frequency variations are 

present in the series. Thus in some cases to try the VG method will worth a while. Also, for long series (N on 

the order of 5,000), the VG estimate is less computationally burdensome and thus is completed more quickly. 

In practice, the VG method is more prone than is the Burg method to numerical instabilities (yielding negative 

eigenvalues) when pure oscillations are analyzed. The BK method is thus somewhat less prone to problems with 

nonstationary time series, although the VG method seems untroubled by all but the most extreme 

nonstationarities. However the Toeplitz methods do appear to yield more stable results under the influence of  

Step (iii): The covariance matrix calculated from the N sample points, is then diagonalized and the eigenvalues 

are ranked in decreasing order. The eigenvalue {&lambdak, k=1,..,M} gives the variance of the time series in the 

direction specified by the corresponding eigenvector Ek ,the square roots of the eigenvalues are called singular 

values and the corresponding set the singular spectrum. These terms give SSA its name; BK showed how to 

obtain singular spectrum by SVD applied to the trajectory matrix D. VG called the Ek's temporal empirical 

orthogonal functions (EOFs), by analogy with the meteorological term used when applying PCA in the spatial 

domain. 

3.1.Principal of SSA: 

SSA is a recent technique of time-series analysis and forecastingwith multiple potential in different applications, 

goingfrom market research or social science to data mining. Withorigin in the former Soviet Union during the 

1980s, there areseveral related publications in the last 20 years, although someauthors stand out [12], [13]. Here, 

the SSA concept and capabilitiesare briefly introduced, along with a complete mathematicaldescription of the 

algorithm and a practical example for an easyunderstanding. 

 

 

 

 

http://www.spectraworks.com/Help/mssatheory.html
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3.2.Concept 

To decompose an originalseries into several independent components or subseries is the main objective of SSA. 

Thesecomponents are interpretable, i.e., they can be mainly identifiedas varying trend, oscillations, or noise. 

Therefore, the maincapabilities of SSA can be summarized as follows [12]: 

1) extraction of trends, periodic components, and smoothing; 

2) complex trends and periodicities with varyingamplitudes; 

3) finding structures in short time series; 

4) envelopes of oscillating signals. 

All these capabilities make SSA a really interesting approach,particularly as most research studies have not yet 

takenit into consideration in HSI. 

 

3.4.Application of SSA 

Given a particular sample, e.g., a spectral pixel in HSI,the SSA aims to achieve improved reconstruction of the 

pixelprofile by means of the main eigenvalue components whileabandoning the less representative or noisy 

components. Foreffective reconstruction of the original profile, there are twoimportant parameters affecting the 

performance. The window size L is the first parameter, which determinesthe total number of components that 

can be extracted in thedecomposition stage. Taking L = 10, for example, ten eigenvaluesare extracted, which 

leads to ten potential components generated. Obviously, the component corresponding to the firsteigenvalue is 

much more significant than those correspondingto the following eigenvalues.The second parameter, i.e., 

eigenvalue grouping (EVG), denotesthe selected combination of extracted components usedfor reconstruction. 

Theuse of only the first two components will remove most noisefrom the input data, for a data set with highly 

noisy content. However, if the noise level is low that onlyaffects small components such as the ninth or the 

tenth, usingjust the first two components in the reconstructed signal maylead to loss of discriminating 

information in the samples. 

 

IV. PROPOSED METHODOLOGY 

The proposed denoising andfeature extraction approach will be applied on hyperspectralimages, and the 

flowchart is shown in Fig. 1 for reference.Hyperspectral sensors have a relatively high spectral resolutionand 

can generate hundreds of observation channels. Theobtained 3-D HSI data cube can be regarded as a stack of2-

D images of the same scene corresponding to different wavelengths, and the correlation between each two 

adjacentbands is fairly high.  
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Fig 1. Proposed Methodology 

In the proposed method, the first step of theis to perform the curvelet transform on each band of 

thehyperspectral image, and a few image stacks are generated after the transform as shown in Fig. 1. By 

applying the curvelettransform on each band, the band correlation property can bepreserved so that SSA is able 

to exploit the spectral signature.To apply SSA in the spectral dimension foreach detail image stack for feature 

extraction and denoising is the next step.After that, the denoised detail images at each band are 

gatheredaccording to their original location, followed by the inversecurvelet transform to get the denoised 

hyperspectral image. 

 

4. 1 Applying SSAIn The Curvelet Domain 

In this paper, a hyperspectral image is denoted as I(p, q) =(I1(p, q), I2(p, q), . . . , IB(p, q)) ∈ _B, where p 

∈[1,P], q ∈[1,Q], P × Q is the spatial dimension of the hyperspectralimage, and B is the number of bands. 

represents the setof real numbers with the pixel intensity Ib(p, q) at all sensorchannels with b ∈[1,B]. The 2-D 

curvelet transform viaUSFFT employed in this paper is completed using the toolboxCurveLab (version 2.1.2) 

[38]. Similar to the wavelet transform,the curvelet transform can also decompose the imageinto a coarse image 

and several detail images. Just like mostimage processing algorithms, the curvelet transform requiresthe 

processed image to be a square whose dimension is a powerof 2. If the size of the original image is not a power 

of 2, pixelswith a value of zero are padded to the next larger power of 2.Given the zero-padded HSI data set, 

I_pad(m, n) =(I_pad1(m, n), I_pad2(m, n), . . . , I_padB(m, n)) where m,n ∈[1,N], consisting of B bands where 
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each band hasN2 pixels, the curvelet transform is performed on a band imageI_padb to obtain the curvelet 

coefficients corresponding to thatband , i.e., 

 

where CT stands for the discrete curvelet transform operationexplained in Section II. The decomposition results 

of the transformcan be regarded as a superposition in the following form: 

 

where is the coarse version of the original band image withlow-frequency contents, and stands for the 

detail bandimage at scale 2−j containing high-frequency contents.With anN × N image, the default number of 

decomposition scales isJ = log2(N) − 3 as set in the CurveLab toolbox. Take a bandimage with the size of 128 × 

128 for instance, the number ofdecomposition scales J will be four. According to the settingsin the toolbox, 

there are eight orientations of the curvelet in thesecond and third scales, starting from the top-left wedge 

andincreasing in a clockwise fashion, but for the coarsest and finestscales, there is only one direction. Thus,  

 

where  represents the finest scale with one orientation.The schematic of four decomposition scales 

corresponding toa 128×128 image is shown in Fig. 2. Then, after applying thecurvelet transform to all bands, 

there will be a coarse imagestack and 17 detail image stacks. 

 

Fig. 2. Illustration of a 128 × 128 image with four decomposition scales.(a) First (finest) scale with one 

orientation. (b) Second scale with eightorientations. (c) Third scale with eight orientations. (d) Fourth (coarsest) 

scalewith one orientation. 

 

V. RESULTS 

Fig 3 shows 
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Fig 3. Input Image 

 

Fig 4. Reconstruction image 

 

Fig 5. SVM Classified image 

The above fig 5 shows the classification results of Indian pine data for the given original data. It is obtained by 

doing SVM classification. 

 

Fig 6. Adaboost SVM output 

mean class-by-class and average and overall accuracy values (%) of ten repeated experiments on testing samples of the 

original indian pine  data set and ssa, ct-ssa, adaboost-ct-, followed by the standard deviation 
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Accuracy:    SSA         CT-SSA     ADABOOST-CTSSA 

 

 

Class 1  : 87.038500     90.460000     90.730000 

Class 2  : 88.918500     92.340000     92.610000 

Class 3  : 91.098500   94.520000     94.790000 

Class 4  : 90.328500    93.750000     94.020000 

Class 5  : 90.728500   94.150000     94.420000 

Class 6  : 95.768500     99.190000     99.460000 

Class 7  : 91.508500   94.930000     95.200000 

Class 8  : 95.898500     99.320000     99.590000 

Class 9  : 88.838500     92.260000   92.530000 

Class 10 : 88.418500     91.840000   92.110000 

Class 11 : 90.898500    94.320000  94.590000 

Class 12 : 88.388500   91.810000  92.080000 

Class 13 : 93.108500     96.53000096.800000 

Class 14 : 96.268500     99.690000   99.960000 

   OA    : 91.708500     95.130000                                                      95.400000 

   AA    : 92.438500       95.860000     96.130000 

 

Accuracy: (predicted class label) / (actual class label) 

Since the proposed methodology is inspired by the feature extraction approach based on SSA. the proposed 

approach is denoted as CT-SSA, and other inspirational approaches are named SSA. The proposed CT-SSA 

approach actually belongs to the 1-Dspectral processing technique for hyperspectralimages.The testing is 

performed on different classes and the accuracy is been calculated. The accuracy is compared between SSA , 

CT-SSA and Adaboost-CT-SSA. Adaboost-CT-SSA is obtained good state of accuracy compared to SSA and 

CT SSA. When compared with only SSA, CT-SSA has better performance. It can be seen that those 

dimensionality reduction techniques only give comparable results compared with the original dataset, although 

they could speed up the classification process. Highest classification OA and AA achieved by Adaboost-CT-

SSA. 

 

VI. CONCLUSION 

In this paper, two powerful tools, i.e., SSA and the curvelet transform, are combined for HSI feature extraction. 

By applying SSA in the curvelet domain, noise can be smoothed from the decomposed signals, resulting in more 

effective feature extraction. Inspired by applying PCA in the curvelet domain and another method of solely 

applying SSA on HSI data, the proposed method adaboost technology takes advantage of those approaches. By 
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using this adaboost technology the feature extraction made more accurate and the noise smoothen is high 

compared to other techniques. 
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