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ABSTRACT

Generally, Spectral component extraction methods are connected to the HSI information shape
straightforwardly. This paper shows a novel calculation for HSI include extraction by abusing the curvelet
transformed space by means of a moderately new unearthly component preparing procedure—solitary range
examination (SSA). Utilizing the support vector machine classifier, trial comes about have demonstrated that
elements separated by SSA on curvelet coefficients have better execution regarding grouping precision over
components removed on wavelet coefficients. Since the proposed approach primarily depends on SSA for
include extraction on the ghostly measurement, it really has a place with the ghastly element extraction
classification. Subsequently, the proposed strategy has likewise been contrasted and some cutting edge
otherworldly element extraction procedures to demonstrate its viability. Furthermore, adaboost technique is
used for classification and denoising of images. By which we can obtain good feature extraction of images.
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I. INTRODUCTION

Hyperspectral  imaging (HSI) provides data with ahigh-resolution spectrum over 2-D images, leading
topowerful capabilities related to classification in many applications,such as remote sensing. The wide range
covered by thespectral information, from visible light to near infrared, allowsthe recognition of small
differential characteristics of the contentin a scene. For that reason, new emerging laboratory-baseddata
analysis, including food quality, medical, or verification ofcounterfeit goods and documents [1]-[4], is based on
HSI.The use of the support vector machine (SVM) as a classifierfor HSI applications has been shown to be
robust and highlyaccurate [5]-[7]. The samples or pixels are evaluated in SVMby means of their respective
features or spectral bands, whichcan contribute to more robust discrimination as they includeinformation from
different spectral wavelengths. However, HSldata are usually prone to noise, which can reduce the
discriminationability limiting the accuracy in classification tasks. Forthat reason, there is great interest for a
potential decomposition of the spectral profiles into components in such a way that noisecould be removed or
mitigated by avoiding particular componentswith high noisy content. In this decomposition context,a
particularly interesting research area is the use of the empiricalmode decomposition (EMD) technique applied in
1-Dto the spectral profile of the pixels as briefly evaluated in [8].The EMD is the main part of the Hilbert—

Huang transform,an algorithm for the analysis of nonlinear and nonstationarytime series [9], [10]. EMD
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decomposes a 1-D signal into afew components called intrinsic mode functions (IMFs) andhas been widely used
in processing signal applications such asspeech recognition [11].Hence, our aim is to introduce the singular
spectrum analysis(SSA) technique in a similar way to evaluate its performance forclassification tasks in HSI. In
this paper, we are also aiming at combining ideas offeature extraction and denoising together for improving
classificationaccuracy of remote sensing hyperspectral images. Finally , Adaboost technique is applied inorder

to increase the rate of accuracy.

Il. CURVELET TRANSFORM:

For multi-scale object representation,Curvelets are a non-adaptive technique. Being an extension of
the wavelet concept, they are becoming popular in similar fields ofscientific computing and image
processing.By using a basis that represents both location and spatial frequency,wavelets generalize Fourier
transform. Directional wavelet transforms go further for 2D or 3D signals, by using basis functions that are also
localized in orientation. From other directional wavelet transforms, a curvelet transform differsas such the
degree of localization in orientation varies with scale. In particular, fine-scale basis functions are long ridges;

the shape of the basis functions at scale j is 271 by 271250 the fine-scale bases are skinny ridges with a

precisely determined orientation.

For representing images (or other functions) which are smooth apart from singularities along smooth
curves, where the curves have bounded curvature, the curvelets are an appropriate basis. i.e. for images where
objects in it have a minimum length scale. For cartoons, geometrical diagrams, and text this property holds. The
edges such images contain appear increasingly straightwhen one zooms in on them. By defining higher
resolution curvelets to be more elongated than the lower resolution ones, Curvelets take advantage of this
property. However, natural images (photographs) do not have this property; they have detail at every scale.
Therefore,it is preferable to use some sort of directional wavelet transformfor natural images, whose wavelets
have the same aspect ratio at every scale.

When the image is of the right type, curvelets provide a representation that is considerably sparser than other
wavelet transforms. This can be quantified by considering the best approximation of a geometrical test image

that can be represented using only 'n" wavelets, and analysing the approximation error as a function of 'n'. The

1 . . .
squared error decreases only as O(—Ejfor a Fourier transform. For a wide variety of wavelet transforms,
7

including both directional and non-directional variants, the squared error decreases as O(ﬁj.. The extra

assumption underlying the curvelet transform allows it to achieve O({logn)?® /n®}..

For computing the curvelet transform of discrete data, efficient numerical algorithms exist. The computational
cost of a curvelet transform is approximately 10-20 times that of an FFT, and has the same dependence

of O(n? logn)n® logn) for an image of size nnx n .
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2.1. From Classical Wavelet to curvelet Transform:

Although the DWTs has established an impressive reputation as a tool for mathematical analysis and signal
processing, it has the disadvantage of poor directionality, which has undermined its usage in many applications.
transformlin recent years significant progress in development of directional wavelets has been made. To improve
directional selectivity, complex wavelet is one way. However, the complex wavelet transform has not been
widely used in the past, since it is difficult to design complex wavelets with perfect reconstruction properties
and good filter characteristics.By essentially using tensor-product one-dimensional (1-D) wavelets,the 2-D
complex wavelets are constructed. The directional selectivity provided by complex wavelets (six directions) is
much better than that obtained by the classical DWTs (three directions), but is still limited.

In 1999,Candés and Donoho proposed an anisotropic geometric wavelet transform named ridgelet transform
which is optimal at representing straight-line singularities. Unfortunately, global straight-line singularities are
rarely observed in real applications. To analyze local line or curve singularities, a natural idea is to consider a
partition of the image, and then to apply the ridgelet transform to the obtained subimages. This block ridgelet-
based transform, which is named curvelet transform, was first proposed by Candés and Donoho in 2000. Apart
from the blocking effects, however, the application of this so-called first-generation curvelet transform is limited
because the geometry of ridgelets is itself unclear, as they are not true ridge functions in digital images. Later, a
considerably simpler second-generation curvelet transform based on a frequency partition technique was
proposed by same authors. A variant of the second-generation curvelet transform was proposed recently, to
handle image boundaries by mirror extension (ME). Previous versions of the transform treated image boundaries
by periodization. Here, the main modifications are to tile the discrete cosine domain instead of discrete Fourier
domain and to adequately reorganize data. The computational complexity of the obtained algorithm and the
standard curvelet transform are same. The second-generation curvelet transform has been shown to be a very
efficient tool for many different applications in solving partial different equations (PDES), image processing,
seismic data exploration and fluid mechanics. In this survey, we will focus on this successful approach and show
its numericaland theoretical aspects as well as the different applications of curvelets.

The strength of the curvelet approach is their ability to formulate strong theorems in approximation and operator
theory, from the mathematical point of view. To representcurve-like edgesthe discrete curvelet transform is very
efficient. However, the current curvelet systems still have two main drawbacks: 1) they are not optimal for
sparse approximation of curve features beyond C2-singularities, and 2) the discrete curvelet transform is highly
redundant. The currently available implementations of the discrete curvelet transform (see www.curvelet.org)
aim to reduce the redundancy smartly. However, independently from the good theoretical results on N-term
approximation by curvelets, the discrete curvelet transformis not appropriate for image compression. The
question of how to construct an orthogonal curvelet-like transform is still open. There have been several other
developments of directional wavelet systems in recent years with the same goal, namely a better analysis and an
optimal representation of directional features of signals in higher dimensions. None of these approaches has
reached the same publicity as the curvelet transform. However, we want to mention shortly some of these

developments and also describe their relationship to curvelets.
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This feature is paid by high redundancy. Applications of Gabor wavelets focused on image classification and
texture analysis. Gabor wavelets have also been used for modeling the receptive field profiles of cortical simple
cells. Applications of Gabor wavelets suggested that the precision in resolution achieved through redundancy
may be a relevant issue in brain modeling, and that orientation plays a key role in the primary visual cortex. The
main differences between steerable wavelets/ Gabor wavelets and other X-lets is that the early methods do not
allow for a different number of directions at each scale.

Contourlets, as proposed by Do and Vetterli, form a discrete filter bank structure that can deal effectively with
piecewise smooth images with smooth contours. This discrete transform can be connected to curvelet-like
structures in the continuous domain. Hence, the contourlet transform can be seen as a discrete form of a
particularcurvelet transform.Curvelet constructions require a rotation operation and correspond to a partition of
the 2-D frequency plane based on polar coordinates; see the section “The Discrete Curvelet Frame.” This
property is what makes the curvelet idea simple in the continuous case but causes problems in the
implementation for discrete images. In particular, approaching critical sampling seems difficult in discretized
constructions of curvelets. Critically sampling is easy to implement for contourlets. The directional filter bank,
as a key component of contourlets, has a convenient tree-structure, where aliasing is allowed to exist and will be
cancelled by carefully designed filters..The 3-D extensions of the 2-D contourlets are Surfacelets, that are
obtained by a higher-dimensional directional filter bank and a multiscale pyramid. They can be used to
efficiently capture and represent surface-like singularities in multidimensional volumetric data involving
biomedical imaging, seismic imaging, video processing and computer vision. Surfacelets and the 3-D curvelets
(see the section “Three-Dimensional Curvelet Transform”) aim at the same frequency partitioning, However,

these two transforms achieve this goal with different approaches as we described above in the 2-D case..

I11. SINGULAR SPECTRAL ANALYSIS(SSA):
The singular spectrum analysis(SSA) is anonparametric spectral estimation method intime series
analysis.ltcombines the elements of classical time series analysis, multivariate statistics, multivariate geometry,
dynamical systems and signalprocessing. SSA is a nonparametric method. It tries to overcome the problems of
finite sample length and noisiness of sampled time series not by fitting an assumed model to the available series,
but by using a data-adaptive basis set, instead of the fixed sine and cosine of the Blackman-Tukey method.
There are three basic steps in SSA: i) embedding the sampled time series in a vector space of dimension M; ii)
computing the MxM lag-covariance matrix Cp of the data; and iii) diagonalizing Cp.
Step (i): The time series {x(t): t=1, ...... N} is embedded into a vector space of dimension M by
considering M laggedcopies {x(t-j): j=1........ M} thereof. The choice of the dimension M is not obvious, but SSA
is typically successful at analyzing periods in the range (M/5, M).
Step (ii): One defines the MxM lag-covariance matrix estimator Cp. There are three distinct methods used
widely to define Cp. In the BK (Broomhead and King) algorithm, a window of length M is moved along the
time series, producing a sequence of N'=N-M+1 vectors in the embedding space. This sequence is used to obtain
the N' x M trajectory matrix D, where the i-th row is the i-th view of the time series through the window. In this
approach, Cp, is defined by:
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In the VG algorithm, Cp is estimated directly from the data as a Toeplitz matrix with constant diagonals, i.e., its

entries C;; depend only on the lag [i-j|:
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Burg covariance estimation is an iterative process based on fitting an AR model with a number- of AR
components equal to the SSA window length. Both the Burg and VG methods impose a Toeplitz structure upon
the autocovariance matrix whereas the BK method does not. The Burg approach in principal should involve less
"power leakage" due to the finite length of the time series and should therefore improve resolution. However,
the Burg estimate can induce significant biases when nonstationarities and very low-frequency variations are
present in the series. Thus in some cases to try the VG method will worth a while. Also, for long series (N on
the order of 5,000), the VG estimate is less computationally burdensome and thus is completed more quickly.

In practice, the VG method is more prone than is the Burg method to numerical instabilities (yielding negative
eigenvalues) when pure oscillations are analyzed. The BK method is thus somewhat less prone to problems with
nonstationary time series, although the VG method seems untroubled by all but the most extreme
nonstationarities. However the Toeplitz methods do appear to yield more stable results under the influence of
Step (iii): The covariance matrix calculated from the N sample points, is then diagonalized and the eigenvalues
are ranked in decreasing order. The eigenvalue {&lambday, k=1,..,M} gives the variance of the time series in the
direction specified by the corresponding eigenvector E, ,the square roots of the eigenvalues are called singular
values and the corresponding set the singular spectrum. These terms give SSA its name; BK showed how to
obtain singular spectrum by SVD applied to the trajectory matrix D. VG called the E,'s temporal empirical
orthogonal functions (EOFs), by analogy with the meteorological term used when applying PCA in the spatial
domain.

3.1.Principal of SSA:

SSA is a recent technique of time-series analysis and forecastingwith multiple potential in different applications,
goingfrom market research or social science to data mining. Withorigin in the former Soviet Union during the
1980s, there areseveral related publications in the last 20 years, although someauthors stand out [12], [13]. Here,
the SSA concept and capabilitiesare briefly introduced, along with a complete mathematicaldescription of the

algorithm and a practical example for an easyunderstanding.
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3.2.Concept

To decompose an originalseries into several independent components or subseries is the main objective of SSA.
Thesecomponents are interpretable, i.e., they can be mainly identifiedas varying trend, oscillations, or noise.
Therefore, the maincapabilities of SSA can be summarized as follows [12]:

1) extraction of trends, periodic components, and smoothing;

2) complex trends and periodicities with varyingamplitudes;

3) finding structures in short time series;

4) envelopes of oscillating signals.

All these capabilities make SSA a really interesting approach,particularly as most research studies have not yet

takenit into consideration in HSI.

3.4.Application of SSA

Given a particular sample, e.g., a spectral pixel in HSI,the SSA aims to achieve improved reconstruction of the
pixelprofile by means of the main eigenvalue components whileabandoning the less representative or noisy
components. Foreffective reconstruction of the original profile, there are twoimportant parameters affecting the
performance. The window size L is the first parameter, which determinesthe total number of components that
can be extracted in thedecomposition stage. Taking L = 10, for example, ten eigenvaluesare extracted, which
leads to ten potential components generated. Obviously, the component corresponding to the firsteigenvalue is
much more significant than those correspondingto the following eigenvalues.The second parameter, i.e.,
eigenvalue grouping (EVG), denotesthe selected combination of extracted components usedfor reconstruction.
Theuse of only the first two components will remove most noisefrom the input data, for a data set with highly
noisy content. However, if the noise level is low that onlyaffects small components such as the ninth or the
tenth, usingjust the first two components in the reconstructed signal maylead to loss of discriminating

information in the samples.

IV. PROPOSED METHODOLOGY

The proposed denoising andfeature extraction approach will be applied on hyperspectralimages, and the
flowchart is shown in Fig. 1 for reference.Hyperspectral sensors have a relatively high spectral resolutionand
can generate hundreds of observation channels. Theobtained 3-D HSI data cube can be regarded as a stack of2-
D images of the same scene corresponding to different wavelengths, and the correlation between each two

adjacentbands is fairly high.
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Classification result De-noised HSI cube
Fig 1. Proposed Methodology
In the proposed method, the first step of theis to perform the curvelet transform on each band of
thehyperspectral image, and a few image stacks are generated after the transform as shown in Fig. 1. By
applying the curvelettransform on each band, the band correlation property can bepreserved so that SSA is able
to exploit the spectral signature.To apply SSA in the spectral dimension foreach detail image stack for feature
extraction and denoising is the next step.After that, the denoised detail images at each band are
gatheredaccording to their original location, followed by the inversecurvelet transform to get the denoised

hyperspectral image.

4. 1 Applying SSAIn The Curvelet Domain
In this paper, a hyperspectral image is denoted as I(p, q) =(11(p, q), 12(p, q), . . ., 1B(p, q)) € _B, where p
€[1,P], g €[1,Q], P x Q is the spatial dimension of the hyperspectralimage, and B is the number of bands.
represents the setof real numbers with the pixel intensity Ib(p, g) at all sensorchannels with b €[1,B]. The 2-D
curvelet transform viaUSFFT employed in this paper is completed using the toolboxCurvelLab (version 2.1.2)
[38]. Similar to the wavelet transform,the curvelet transform can also decompose the imageinto a coarse image
and several detail images. Just like mostimage processing algorithms, the curvelet transform requiresthe
processed image to be a square whose dimension is a powerof 2. If the size of the original image is not a power
of 2, pixelswith a value of zero are padded to the next larger power of 2.Given the zero-padded HSI data set,
I_pad(m, n) =(1_pad1(m, n), I_pad2(m, n), ..., I_padB(m, n)) where m,n €[1,N], consisting of B bands where
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each band hasN2 pixels, the curvelet transform is performed on a band imagel_padb to obtain the curvelet

coefficients corresponding to thatband u:,E, ie.,

cp = CT(lpaay )
where CT stands for the discrete curvelet transform operationexplained in Section 1. The decomposition results

of the transformcan be regarded as a superposition in the following form:

j-1
D _
Cp = Cpj T 2 Whj
=1

where cy;is the coarse version of the original band image withlow-frequency contents, and W ;stands for the

detail bandimage at scale 2—j containing high-frequency contents.With anN x N image, the default number of
decomposition scales isJ = log2(N) — 3 as set in the CurvelLab toolbox. Take a bandimage with the size of 128 x
128 for instance, the number ofdecomposition scales J will be four. According to the settingsin the toolbox,
there are eight orientations of the curvelet in thesecond and third scales, starting from the top-left wedge

andincreasing in a clockwise fashion, but for the coarsest and finestscales, there is only one direction. Thus,

-1 g

Co = Cpps + Whas + Z Z W

j=2 1=1
where Wy, ; represents the finest scale with one orientation.The schematic of four decomposition scales

corresponding toa 128x128 image is shown in Fig. 2. Then, after applying thecurvelet transform to all bands,

there will be a coarse imagestack and 17 detail image stacks.

===

(@) (b) © (d)
Fig. 2. llustration of a 128 x 128 image with four decomposition scales.(a) First (finest) scale with one
orientation. (b) Second scale with eightorientations. (c) Third scale with eight orientations. (d) Fourth (coarsest)

scalewith one orientation.

V. RESULTS
Fig 3 shows the Indian Pines data set which was collected in the Indian Pines test site in Northwest Indiana,
USA on June 12, 1992. The scene consists of two-thirds agriculture, and one-third forest, or other natural

perennial vegetation
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Fig 5. SVM Classified image
The above fig 5 shows the classification results of Indian pine data for the given original data. It is obtained by
doing SVM classification.

Fig 6. Adaboost SVM output

fig 6 shows adaboost svm output that avoids errors and get a more consistent result and obtain more

accuracy.
mean class-by-class and average and overall accuracy values (%) of ten repeated experiments on testing samples of the

original indian pine data set and ssa, ct-ssa, adaboost-ct-, followed by the standard deviation
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Accuracy: SSA CT-SSA ADABOOST-CTSSA

Class 1 :87.038500 90.460000 90.730000
Class 2 :88.918500 92.340000 92.610000
Class 3 :91.098500 94.520000 94.790000
Class 4 :90.328500 93.750000 94.020000
Class 5 :90.728500 94.150000 94.420000
Class 6 :95.768500 99.190000 99.460000
Class 7 :91.508500 94.930000 95.200000
Class 8 :95.898500 99.320000 99.590000
Class 9 :88.838500 92.260000 92.530000
Class 10 : 88.418500 91.840000 92.110000
Class 11 : 90.898500 94.320000 94.590000
Class 12 : 88.388500 91.810000 92.080000
Class 13 :93.108500 96.53000096.800000
Class 14 : 96.268500  99.690000 99.960000
OA :91.708500 95.130000 95.400000
AA :92.438500  95.860000 96.130000

Accuracy: (predicted class label) / (actual class label)

Since the proposed methodology is inspired by the feature extraction approach based on SSA. the proposed
approach is denoted as CT-SSA, and other inspirational approaches are named SSA. The proposed CT-SSA
approach actually belongs to the 1-Dspectral processing technique for hyperspectralimages.The testing is
performed on different classes and the accuracy is been calculated. The accuracy is compared between SSA ,
CT-SSA and Adaboost-CT-SSA. Adaboost-CT-SSA is obtained good state of accuracy compared to SSA and
CT SSA. When compared with only SSA, CT-SSA has better performance. It can be seen that those
dimensionality reduction techniques only give comparable results compared with the original dataset, although
they could speed up the classification process. Highest classification OA and AA achieved by Adaboost-CT-
SSA.

V1. CONCLUSION

In this paper, two powerful tools, i.e., SSA and the curvelet transform, are combined for HSI feature extraction.
By applying SSA in the curvelet domain, noise can be smoothed from the decomposed signals, resulting in more
effective feature extraction. Inspired by applying PCA in the curvelet domain and another method of solely

applying SSA on HSI data, the proposed method adaboost technology takes advantage of those approaches. By
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using this adaboost technology the feature extraction made more accurate and the noise smoothen is high

compared to other techniques.
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