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ABSTRACT 

Assessment  of Software Reliability is a vital aspect to be considered during the software development process. 

Software reliability is the probability that given software functions work without failure in a specific 

environment during a specified time. It can be assessed using Statistical Process Control(SPC). SPC is a method 

of quality control that uses statistical methods to control and monitor a software process and thereby contributes 

significantly to the improvement of software reliability. Control charts are widely used SPC Tools to monitor 

software quality.  The proposed model involves estimation of the parameters of the mean value function and 

hence these values are used to develop the control charts.  The Maximum Likelihood Estimation (MLE) method 

is used to derive the estimators of the distribution. In this paper we propose a mechanism to monitor software 

quality based on order statistics of cumulative observations of time domain failure data using mean value 

function of Burr type III distribution based on Non-Homogeneous Poisson Process. 

Keywords- Burr Distribution, ,Control Charts, Mean Value Function, Non-Homogeneous Poisson Process, 

Order Statistics, Probability Limits, Software Reliability, Statistical Process Control. 

 

I. INTRODUCTION 

Software reliability is one of the most important characteristics of software quality. Reliable software systems 

can be produced and maintained by employing quality measurement and management technologies during the 

software life cycle. Software Reliability is the probability of failure free operation of software in a specified 

environment during specified time[1]. 

 The monitoring of Software reliability process is a far from simple activity. In recent years, several authors 

have recommended the use of SPC for software process monitoring. A few others have highlighted the potential 

pitfalls in its use[2].  

The main thrust of the paper is to formalize and present an array of guidelines in a disciplined process with a 

view to helping the practitioner in putting SPC to correct use during software process monitoring.  

Over the years, SPC has come to be widely used among others, in manufacturing industries for the purpose of 

controlling and improving processes. Our effort is to apply SPC techniques in the software development process 

so as to improve software reliability and quality [3]. It is reported that SPC can be successfully applied to 
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several processes for software development, including software reliability process. SPC is traditionally so well 

adopted in manufacturing industry. In general software development activities are more process centric than 

product centric which makes it difficult to apply SPC in a straight forward manner.  

The utilization of SPC for software reliability has been the subject of study of several researchers. A few of 

these studies are based on reliability process improvement models. They turn the search light on SPC as a means 

of accomplishing high process maturities. Some of the studies furnish guidelines in the use of SPC by modifying 

general SPC principles to suit the special requirements of software development [3] (Burr and Owen[4]; Flora 

and Carleton[5]). It is especially noteworthy that Burr and Owen provide seminal guidelines by delineating the 

techniques currently in vogue for managing and controlling the reliability of software. Significantly, in doing so, 

their focus is on control charts as efficient and appropriate SPC tools.  

It is accepted on all hands that Statistical process control acts as a powerful tool for bringing about improvement 

of quality as well as productivity of any manufacturing procedure and is particularly relevant to software 

development also. Viewed in this light, SPC is a method of process management through application of 

statistical analysis, which involves and includes the defining, measuring, controlling, and improving of the 

processes[6]. 

 

II. PROPOSED WORK 

A. BURR Type III NHPP Model   

NHPP software reliability growth models  have been proposed to assess the reliability of software [13].In these 

models ,the number of software failures display the behavior of non-homogenous PoissonProcess[20].These 

models consider the debugging process as a counting process characterized by its mean value function. Software 

reliability can be estimated once the mean value function is determined. Model parameters are usually estimated 

using Maximum Likelihood method or Genetic Algorithms. 

The various notations used in NHPP model are : 

{N(t),t>0}  represents the cumulative number of failures  by time „t‟. 

m(t) denotes the expected number of software failures by time „t‟. 

„a‟   represents the expected number of software failures eventually detected. 

„b‟  denotes the failure detection rate. 

λ (t) corresponds to intensity function of software failures [9,13,23]. 

The Assumptions of NHPP Model are : 

1. A  Software system is subject to failures during execution caused by faults remaining in the system. 

2. All faults are mutually independent from a failure detection point of view. 

3. Failure rate of the software depends on the faults remaining in the system. 

4. The number of faults detected at any time is proportional to the remaining number of faults in the software. 

Since the expected number of errors remaining in the system at any time is finite, m(t) is bounded, non-

decreasing function of „t‟ with the boundary conditions  

                                   m(t) = 









ta

t

,

0,0
 

For t>=0 N(t) is known to have a Poisson Probability mass function with parameters m(t) i.e.,  
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The behaviour of software failure phenomena can be illustrated through N(t) process. Several time domain 

models exist in the literature which specify that the mean value function m(t) will be varied for each NHPP 

process. 

In this paper we consider the mean value function of Burr Type III software reliability growth model as 

                          
bctatm  ]1[)(         (1) 

Here, we consider the performance given by the Burr Type III software reliability growth model based on order 

statistics and whose mean value function is given by                                                                                

                     


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Where [m(t)/a] is the cumulative distribution function of Ordered Burr distribution model 

 

                     

 

This is considered as Poisson model `with mean a.  Let Sk be the time between (k-1)
th

 and k
th 

failure of the 

software product. It is assumed that Xk be the time up to the k
th

 failure. We need to find out the probability of 

the time between (k-1)
th

 and k
th

 failures. The Software Reliability function is given by   

                    R=
)]()([

)1(

)/( smsxm

X

k
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B. Parameter Estimation Based on Inter Failure Times 

The mean value function of Order Burr Type III is given by  

                    
r

bc

itatm
 )(1)(                     (4) 

The constants a, b and c in the mean value function are called parameters of the proposed model. To assess the 

software reliability, it is necessary to compute the expressions for finding the values of a, b and c. For doing 

this, Maximum Likelihood estimation is used whose Log Likelihood function is given by                          

                  LLF =
r
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Differentiating m(t) with respect to „t‟ we get  (t) 
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The log likelihood equation to estimate the unknown parameters a, b, c after substituting (4) in (5) is given by 

LogL= -[a[1+(tn)
-c

]
-b

]
r
+




n

i

cbar
1

]logloglog[log + 




 
n

i
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c

i tctbr
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)]log()1())(1log()1([         (7) 

 

 Differentiating LogL with respect to „a‟ and equating to 0 (i.e )0
log



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L
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 Differentiating LogL with respect to „b‟ and equating to 0 (i.e )0
log
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Again Differentiating g(b) with respect to „b‟ and equating to 0 (i.e )0
log
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Differentiating LogL with respect to „c‟ and equating to 0 (i.e )0
log


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Again Differentiating  g(c) with respect to „c‟ and equating to 0 

(i.e we get 
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The parameters „b‟ and „c‟ are estimated by iterative Newton-Raphson Method  using 
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 which are substituted in (7) to determine „a‟. 

 

C. Order Statistics 

Order Statistics can be used in several applications like data compression, survival analysis, Study of Reliability 

and many others [11]. Let X denote a continuous random variable with probability density function f(x) and 

cumulative distribution function F(x), and let (X1 , X2 , …, Xn) denote a random sample of size n drawn on X. 

The original sample observations may be unordered with respect to magnitude. A transformation is required to 

produce a corresponding ordered sample. Let (X(1) , X(2) , …, X(n)) denote the ordered random sample such 

that X(1) < X(2) < … < X(n); then (X(1), X(2), …, X(n)) are collectively known as the order statistics derived 

from the parent X. The various distributional characteristics can be known from Balakrishnan and Cohen [11].  

The inter-failure time data represent the time lapse between every two consecutive failures. On the other hand if 

a reasonable waiting time for failures is not a serious problem, we can group the inter-failure time data into non 

overlapping successive sub groups of size 4 or 5 and add the failure times with in each sub group.  

For instance if a data of 100 inter-failure times are available we can group them into 20 disjoint subgroups of 

size 5. The sum total in each subgroup would denote the time lapse between every 5
th

 order statistic in a sample 

of size 5. In general for inter-failure data of size „n‟, if r (any natural number) less than „n‟ and preferably a 

factor n, we can conveniently divide the data into „k‟ disjoint subgroups (k=n/r) and the cumulative total in each 

subgroup indicate the time between every r
th

 failure. The probability distribution of such a time lapse would be 

that of the ordered statistic in a subgroup of size r, which would be equal to power of the distribution function of 

the original variable (m(t)).  

The whole process involves the mathematical model of the mean value function and knowledge about its 

parameters. If the parameters are known they can be taken as they are for the further analysis, if the parameters 

are not known they have to be estimated using a sample data by any admissible, efficient method of estimation. 

This is essential because the control limits depend on mean value function, which in turn depends on the 

parameters. If software failures are quite frequent, keeping track of inter-failure is tedious. If failures are more 

frequent order statistics are preferable [11]. 

 

D. Monitoring the time between failures using control chart 

Software process monitoring is an essential activity that has to be performed during software process 

improvement. Monitoring involves measuring a quantifiable characteristic of software process over time and 

detecting out anomalies. A process must be characterized before it is monitored, for example by using upper and 

lower threshold values for process performance limits. When the observed performance falls outside these limits 

one can understand that there is something wrong in the process. Statistical process control is an time series 

analysis technique that has been effective in manufacturing and recently used in software contexts. It uses 

control charts as a tool to establish operational limits for acceptable process variation [12].    

Control charts are an essential tool used for continuous quality control. Control charts monitor processes to 

show how the process is performing and how the process and capabilities are affected by changes to the process. 

This information is then used to make quality improvements. Control charts are also used to determine the 

capability of the process. These charts have  data points  that  are either averages of subgroup measurements or 

individual measurements plotted on the x/y axis and joined by a line. Time is always on the x-axis. These charts 



 

1272 | P a g e  

 

have  an indicator of the process performances as average line, Upper Control Limit (UCL) ,Lower Control 

Limit (LCL). 

Control charts are mainly classified as attribute charts and variable charts. Attribute Control Charts are used to 

monitor an organization„s progress at removing defects that are inherently present in a process. Attribute charts 

are based on data that can be grouped and counted as present or not. Attribute charts are also called count charts 

and attribute data is also known as discrete data.Examples of attribute charts are p-charts, np-chart, c-chart ,u 

chart.  

Variable charts are based on variable data that can be measured on a continuous scale .Variables Control Charts 

monitor process parameters or product features. A variable„s measurement can indicate a significant change in 

process performance without producing a non-conformance. Variables Control Charts are more sensitive to 

change and are more efficient than Attribute Control Charts. Two primary statistics are measured and plotted on 

a Variables Control Chart: central tendency and process dispersion.Examples of variable charts are X-bar , R 

charts and multivariate charts. We have named the control chart as Failures Control Chart in this paper. The 

said control chart helps to assess the software failure phenomena on the basis of the given inter-failure time 

data[15]. 

 

E. Distribution of Time Between Failures 

For a software system during normal operation, failures are random events caused by, for example, problem in 

design or analysis and in some cases insufficient testing of software. In this paper we applied Burr Type III to 

time between failures data. This distribution uses cumulative time between failure data for reliability 

monitoring.  

The equation for mean value function of Burr Type III from equation [1] is 

                                
bctatm  ]1[)(  

Equate the pdf of above m(t) to 0.99865, 0.00135, 0.5 and the respective control limits are given by. 

99865.0]1[   bc

u tT  

5.0]1[   bc

c tT  

 

These limits are converted to m(tu),m(tc)and m(tl) form. They are used to find whether the software process is in 

control or not by placing the points in control charts. 

III. DATA ANALYSIS AND RESULTS 

The procedure of a failures control chart for failure software process will be illustrated with an example here. 

Table 1 shows the time between failures of a software product. 

Table:1 Software failure data documented  in Lyu(1996) 

 

 

 

 

 

00135.0]1[   bc

l tT
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Failure No  Time Between Failures(hrs)  Failure No  Time Between 

Failures(hrs)  

Failure 

No  

Time Between 

Failures(hrs)  

1  33  36  5  71 55 

2  9  37  66  72  409  

3  4  38  289  73  36  

4  66  39  3  74  15  

5  0.5  40  9  75  573  

6  18  41  12  76  583  

7  149  42  18  77  60  

8  14  43  9  78  19  

9  15  44  75  79  20  

10  50  45  15  80  79  

11  81  46  291  81  24  

12  34  47  212  82  540  

13  85  48  4  83  52  

14  54  49  5  84  1596  

15  3  50  308  85  314  

16  15  51  269  86  1  

17  6  52  276  87  763  

18  8  53  1  88  10  

19  130  54  400  89  20  

20  19  55  294  90  144  

21  19  56  227  91  28  

22  112  57  118  92  56  

23  15  58  13  93  476  

24  16  59  47  94  65  

25  154  60  89  95  98  

26  50  61  242  96  884  

27  10  62  99  97  212  

28  2  63  607  98  287  

29  22  64  83  99  53  

30  53  65  2  100  3  

31  19  66  26  101  831  

32  58  67  586  102  43  

33  20  68  708  103  55  

34  3  69  6  104  109  

35  92  70  4    

 

Table: 2 Successive Differences of 4
th

 order mean value function (m(t)) 
Failure 

No. 

4-Order 

Cumulative 

m(t) Successive Difference  

of  m(t) 

Failure 

No. 

4-Order 

Cumulative 

m(t) Successive 

Difference 

of 

 m(t) 

1 112 7.0270383 0.0258214 14 4226.5 7.1165707 0.0013331 

2 293.5 7.0528598 0.0122561 15 4493.5 7.1179038 0.0044536 

3 473.5 7.0651159 0.0071614 16 5524.5 7.1223575 0.0045579 

4 630.5 7.0722773 0.0056553 17 6846.5 7.1269154 0.0014080 

5 793.5 7.0779326 0.0045077 18 7320.5 7.1283235 0.0031854 

6 955.5 7.0824403 0.0048821 19 8527.5 7.1315090 0.0004285 
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7 1171.5 7.0873225 0.0028910 20 8705.5 7.1319375 0.0046554 

8 1323.5 7.090213 0.0020425 21 10917.5 7.1365930 0.0019309 

9 1443.5 7.0922560 0.0052756 22 12005.5 7.1385239 0.0004138 

10 1810.5 7.0975317 0.0014083 23 12253.5 7.1389378 0.0023596 

11 1924.5 7.098940 0.0054792 24 13776.5 7.1412975 0.0007910 

12 2446.5 7.1044193 0.0067383 25 14331.5 7.1420885 0.0013949 

13 3304.5 7.1111576 0.0054130 26 15369.5 7.1434835  

Table: 3  Successive Differences of 5
th

 order mean value function(m(t)) 

 

 
Failure No. 5-Order 

Cumulative 
m(t) Successive 

Difference  of 

m(t) 

Failure No. 5-Order 
Cumulative 

m(t) Successive 
Difference of 

m(t) 

1 

112.5 4.442267 0.020125 11 3999.5 4.499509 0.001635 

2 358.5 4.462393 0.008869 12 4493.5 4.501144 0.00287 

3 615.5 4.471262 0.004056 13 5526.5 4.504014 0.002944 

4 793.5 4.475318 0.005245 14 6856.5 4.506958 0.001984 

5 1109.5 4.480563 0.001793 15 7944.5 4.508942 0.001221 

6 1246.5 4.482356 0.002186 16 8705.5 4.510163 0.003356 

7 1438.5 4.484542 0.003463 17 11231.5 4.513519 0.001043 

8 1810.5 4.488005 0.001025 18 12169.5 4.514563 0.000747 

9 1939.5 4.489031 0.005174 19 12892.5 4.515309 0.00136 

10 2759.5 4.494205 0.005304 20 14331.5 4.51667  

 

Table : 4     4
Th

 and 5
th

  order Parameter Estimates and control limits 

 
Order a b c m(tu) m(tc) m(tL) 

4 7.371836 0.099992 0.50032 7.361884 0.009952 3.685918 

5 4.655946 0.099988 0.108240 4.64966 0.006286 2.327973 

 

 

Figure 1 : Failure Control Chart  of Table 2 
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Figure 2 :Failure Control Chart of Table 3 

 

IV. CONCLUSION 
The 25 of 4

th
-order, 19 of 5

th
-order samples successive differences were plotted through the estimated mean 

value function against the failure number. The parameter estimation is carried out by Newton Raphson Iterative 

method for Burr model. The graphs have shown out of control signals i.e. below the LCL. Hence we conclude 

that our method of estimation and the control chart are giving a +ve recommendation for their use in finding out 

preferable control process or desirable out of control signal. By observing the Mean value Control chart we 

identified that the failure situation is detected at 3
rd

 to 25
th

 points of table-2 for the corresponding m(t) in 4
th

-

order statistics and at 3
rd

 to 19
th

 point of table-3 for the corresponding m(t) in 5
th

-order statistics, which is below 

m(tL). It indicates that the failure process is detected at an early stage. The early detection of software failure 

will improve the software Reliability. When the time between failures is less than LCL, it is likely that there are 

assignable causes leading to significant process deterioration and it should be investigated. On the other hand, 

when the time between failures has exceeded the UCL, there are probably reasons that have lead to significant 

improvement. 
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