Vol. No.6, Issue No. 08, August 2017

www.ijarse.com

NEW SYNTHESIZED PALLADIUM COMPLEX CONTAINING N,N,O-TRIDENTATE LIGANDS : A CATALYSED CROSS-COUPLING REACTION

Manish K Shah

Chemical Research Laboratory, Department of Chemistry Saurashtra University, Rajkot – 360005(Gujarat), (India)

ABSTRACT

New Tridentate ligands were prepared by the condensation of different hydrazine with substituted salicyldehydes or different aromatic ketones, and their New synthesized metal complex are thermally stable and neither air- nor moisture-sensitive. Suzuki–Miyaura cross-coupling reaction is carried out in present of various ligands and palladium salts, Different solvent/water ratio with different Base and studied effects its effect on the performance of the coupling reaction.

Keywords: Palladium complex, N,N,O -Tridentate ligand, Suzuki-Miyaura cross-coupling reaction.

I. INTRODUCTION

In present studies the Suzuki reaction is carried out in aqueous phases including water and water/organic mixtures as solvents for the Suzuki reaction has also received significant attention, as water is, environmental friendly, economical, and allows simple separation and catalyst recycling. [1-2] Suzuki cross-coupling reaction of aryl halides with organoboron reagents is one of the most significant and consistent methods for the transformation of biaryls, which are present in pharmaceuticals, natural products, and functional polymer, agrochemicals materials. [3-10] Nature of ligand is very important in the Suzuki coupling. Bulky, electron-rich ligands are outstanding in Suzuki cross-coupling reaction, resulting from their higher donor ability and stabilization effects. [111-14] Recently the application of nitrogen-based ligands species, such as schiff bases, aryloximes, arylimines, guanidine, has also consider as a highly active catalysts for Suzuki reaction in aqueous media. [15-20]

II. MATERIALS AND METHODS

All the required compounds and solvents were purchased from loba chemie, Merck and spectrochem, and checked TLC. ¹H NMR spectra were taken on Bruker NMR spectrometer (400 MHz), using TMS [as internal standard], IR spectra were taken with Shimadzu IR Affinity-1S FTIR spectrometer. Mass spectra were done on GCMS QP2010 mass spectrometer, Elemental data was recorded by Carlo Erba EA 1108 elemental analyzer.

2.1 General procedure for the synthesis of benzothiazole ligand

A solution of 1-(benzothiazol -2-yl)hydrazine (0.01 mole) and 5-Bromo salicylaldehyde refluxed in presence of glacial acetic acid (2 ml) at 60-65°C for 2 hour. The reaction is being monitored by TLC using

Vol. No.6, Issue No. 08, August 2017

www.ijarse.com

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

hexane:ethyl acetate (1:2). After completion of the reaction, the product mixture was poured into crushed ice. Light yellow ppt. fall out and Filtered out the separated solid product washed by dry ether and dried under reduced pressure.

2.2 Spectral data of ligands

BJ-14:-

M.P. 184°C, Elemental Analytical Calculation for C₁₄H₁₀N₃OSBr (346.97 g/mol): C,48.29%; H,2.89%; N, 12.07%; O,4.59%; Br, 22.59%; S, 9.21 Found: C, 48.20%; H, 2.44%; N,12.01%; O, 4.52%; Br, 22.50%; S, 9.18 %. **MS** (m/z): 1 H-NMR (**DMSO-d**₆): δ_{nom} ; 10.64, (s, 1H, -OH); 7.80-7.41 (d, 2H, Ar-H,); 7.40-6.89 (d, 5H, Ar-H,); 8.39(s, 1H,CH=N); 12.31 (s, 1H, -NH). ¹³C-NMR (DMSO-d₆):δppm 166.86 (N=C-N); 155.53 (C-OH), 110.15 (C-Br), 132.93 (CH=N), 128.59,126.15,122.26,121.81,121.67,118.42 (10 C-Ar).IR, (cm-1): v(OH) 3176; v(-NH) 2980; v(N-N) 966,939; v(Ar-C-H) 2989; v(Ar-C=C) 1506; v(C=N)1614.

Fig.1 Reaction Scheme

2.3 Preparation of Metal Complexes

Pd(II) Coordination metal complexes were prepared by equamolar mixing of ligand in methanol and an aqueous solution of the corresponding metal chlorides in 1:1 molar ratio. The reaction mixture was refluxed for 2-3 hrs. The completion of the reaction was monitored by TLC. After completation of reaction the residue was cooled to room temperature. The solid complexes formed were filtered, washed with hot water (2 times) and ethyl alcohol, and finally dried in vacuum desiccators over anhydrous Calcium Chloride.

Vol. No.6, Issue No. 08, August 2017

www.ijarse.com

Suzuki Coupling of 4-Bromo Benzaldehyde with Phenylboronic Acid under Different Conditions

Fig.2 Suzuki miyura cross coupling Reaction

Table-1. Suzuki-Miyaura cross-coupling reaction in presence of different ratio of Metal salt and ligand

No.	Ligand	Ligand/ Metal	Pd Complex/ligand	TIME	Yield
	code	Salts ratio	(substituted salicyaldeyde)		%
			Where R=		
1.	BJ-11	1:1	3,5-Dichloro	8 h	15%
2.	BJ-11	1:2	3,5-Dichloro	8 h	30%
3.	BJ-11	1:3	3,5-Dichloro	5 h	50%
4.	BJ-11	1:4	3,5-Dichloro	4 h	70%
5.	BJ-12	1:1	5-Bromo	7 h	20%
6.	BJ-12	1:2	5-Bromo	7 h	34%
7.	BJ-12	1:3	5-Bromo	5 h	52%
8.	BJ-12	1:4	5-Bromo	4 h	75%

Table-2 Suzuki-Miyaura cross-coupling reaction in presence of different solvent Ratio and Bases

No.	Solvent	Bases	Yield %
1.	Me-OH/H ₂ O (1:1)	Na ₂ CO ₃	65%
2.	Me-OH /H ₂ O (1:2)	Na ₂ CO ₃	50%
3.	Me-OH /H ₂ O (1:3)	Na ₂ CO ₃	26%
4.	Me-OH /H ₂ O (3:1)	Na ₂ CO ₃	75%
5.	Me-OH /H ₂ O (1:1)	K ₂ CO ₃	43%
6.	Me-OH /H ₂ O (1:1)	КОН	65%
7.	Me-OH /H ₂ O (1:1)	NaOH	70%
8.	Me-OH /H ₂ O (1:1)	NaOMe	28%
9.	Me-OH /H ₂ O (1:1)	Et ₃ -N	82%
10.	Et-OH /H ₂ O (1:1)	K ₂ CO ₃	53%

Vol. No.6, Issue No. 08, August 2017

IJARSE ISSN (0) 2319 - 8354 ISSN (P) 2319 - 8346

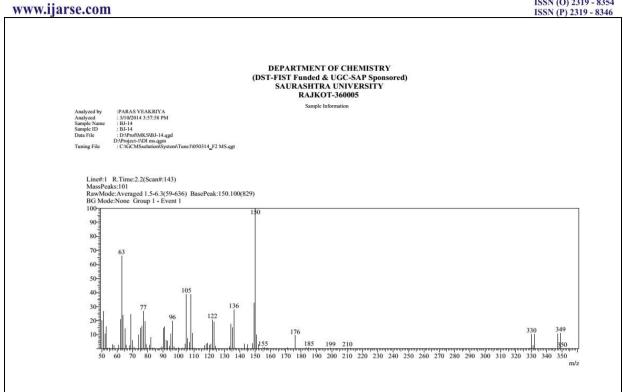


Fig.3 Mass spectrum of ligand BJ-14

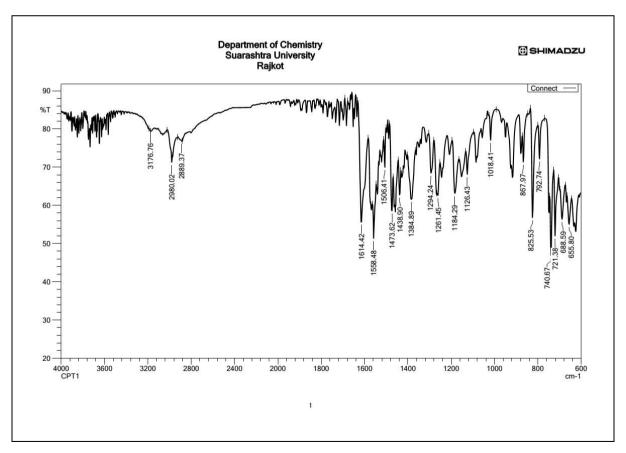


Fig.4 IR Spectra of Ligand

Vol. No.6, Issue No. 08, August 2017

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

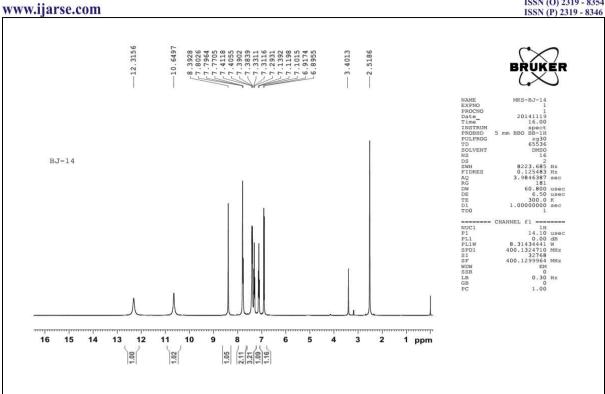


Fig.5 ¹H NMR spectra of Ligand

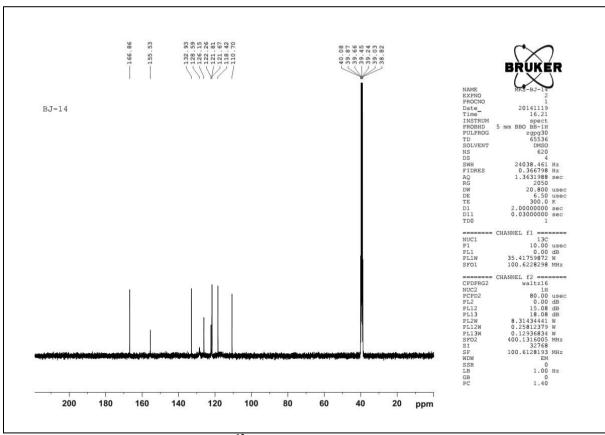


Fig.6 ¹³C NMR spectra of Ligand

Vol. No.6, Issue No. 08, August 2017

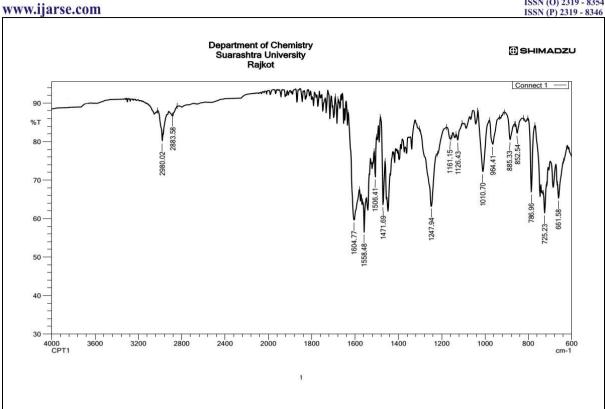


Fig.7 IR spectra of Metal Complex

Fig.8 ESI-MASS Spectra of Metal complexes

III. RESULT AND DISCUSSION

Generally suzuki cross-coupling is carried out in presence of Different Palladium salts and N_2 atmosphere, here we are used metal complex, various ligands and palladium salts, Different solvent/water ratio with different Base base in Suzuki cross coupling reaction and obtain good/moderate yield. Here we used many bases; in which triethylamine we got a good yield, as compared to other bases also same result obtain in metal salts and ligand ratio in which as metal salt ratio increase, yield also increase compare to low ratio metal salts.

Vol. No.6, Issue No. 08, August 2017 www.ijarse.com

IV. CONCLUSION

In this paper, benzothiazole metal complex has been synthesized and successfully used as a catalyst in Suzukimiyaura cross coupling reaction. The benefit of catalyst is easy to handle, recoverable and also cheap. These reactions were carried out in several bases in aqueous media. Hence, we observed that, in Suzukimiyaura reaction, presence of triethylamine base has given excellent yield as compared to other bases, and also in metal salt/ligand ratio as metal complex ratio increase yield also increase.

V. ACKNOWLEDGMENT

Authors are thankful to Department of Chemistry, Saurashtra University Rajkot Gujarat india. We are also thankful to NFDD (National Facility for Drug Discovery) for various analysis.

REFERENCES

- [1] Mondal M, Bora U. An efficient protocol for palladium-catalyzed ligand-free Suzuki Miyaura coupling in water. Green Chem. 2012; 14:1873–1876.
- [2] Inés B, SanMartin R, Moure MJ, Domínguez E. Insights into the role of New palladium pincer complexes as robust and recyclable precatalysts for Suzuki-Miyaura couplings in neat water. Adv. Synth. Catal, 2009; 351: 2124–2132.
- [3] Miyaura N, Suzuki A. palladium-catalyzed cross-coupling reactions of organo boron compounds. Chem. Rev. 1995; 95: 2457.
- [4] Suzuki A. Recent advances in the cross-coupling reactions of organo boron derivatives with organic electrophiles, J. Organomet. Chem. 1999; 576, 147.
- [5] Suzuki A. Carbon-carbon bonding made easy. Chem. Commun. 2005; 4759.
- [6] Littke AF, Fu GC. Palladium-Catalyzed Coupling Reactions of Aryl Chlorides. Angew. Chem. Int. Ed. 2002; 41: 4176.
- [7] Phan NTS, Van Der Sluys M, Jones CW. On the Nature of the Active Species in Palladium Catalyzed Mizoroki-Heck and Suzuki-Miyaura Couplings- Homogeneous or

Heterogeneous Catalysis, A Critical Review. Adv. Synth. Catal. 2006; 348: 609.

- [8] Alonso F, Beletskaya IP, Yus M. Non-conventional methodologies for transition-metal catalyzed carbon-carbon coupling: a critical overview. Part 2: The Suzuki reaction. Tetrahedron, 2008; 64: 3047.
- [9] Slagt VF, De Vries AHM, De Vries JG, Kellogg RM. Practical Aspects of CarbonCarbon Cross-Coupling Reactions Using Heteroarenes. Org. Process Res. Dev. 2010; 14:30.
- [10] Polshettiwar V, Decottignies A, Len C, Fihri A. Suzuki–Miyaura Cross-Coupling Reactions in Aqueous Media: Green and Sustainable Syntheses of Biaryls. Chem. Sus. Chem. 2010; 3: 502.
- [11] Weng Z, Teos A, Hort S. Metal Unsaturation and Ligand Hemilability in Suzuki Coupling. Acc. Chem. Res. 2007; 40:676.
- [12] Martin R, Buchwald SL. Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions Employing Dialkyl biaryl Phosphine Ligands. Acc. Chem. Res. 2008; 41: 1461.
- [13] Fu GC. The Development of Versatile Methods for Palladium-Catalyzed Coupling Reactions of Aryl Electrophiles through the Use of P(t-Bu)3 and PCy3 as Ligands. Acc. Chem. Res. 2008; 41: 1555.

Vol. No.6, Issue No. 08, August 2017

www.ijarse.com

- IJARSE ISSN (0) 2319 - 8354 ISSN (P) 2319 - 8346
- [14] Molander GA, Canturk B. Organo trifluoroborates and Mono coordinated Palladium Complexes as Catalysts-A Perfect Combination for Suzuki-Miyaura Coupling. Angew. Chem. Int. Ed. 2009; 48: 9240.
- [15] Meise M, Haag R. A highly active water-soluble cross-coupling catalyst based on dendritic polyglycerol N-heterocyclic carbene palladium complexes. Chem Sus Chem 2008; 1: 637–642.
- [16]Kostas ID, Coutsolelos AG, Charalambidis G, Skondra A. The first use of porphyrins as catalysts in cross-coupling reactions: A water-soluble palladium complex with a porphyrin ligand as an efficient atalyst precursor for the Suzuki-Miyaura reaction in aqueous media under aerobic conditions. Tetrahedron Lett. 2007; 48: 6688–6691.
- [17] Oertel AM, Ritleng V, Chetcuti MJ. Synthesis and catalytic activity in suzuki coupling of nickel complexes bearing n-butyl- and triethoxysilylpropyl-substituted NHC ligands:Toward the heterogenization of molecular catalysts. Organometallics 2012; 31: 2829-2840.
- [18] Zhao DB, Fei ZF, Geldbach TJ, Scopelliti R, Dyson PJ. Nitrile-functionalized pyridinium ionic liquids: synthesis, characterization, and their application in carbon-carbon coupling reactions. J. Am. Chem. Soc. 2004; 126: 15876–15882.
- [19]Liu P, Yan M, He R. Bis(imino)pyridine palladium(II) complexes as efficient catalysts for the Suzuki Miyaura reaction in water. Appl. Organometal. Chem. 2010; 24: 131–134.
- [20] Cobo I, Matheu MI, Castillón S, Boutureira O, Davis BG. Phosphine-free Suzuki Miyaura cross-coupling in aqueous media enables access to 2-C-aryl-glycosides. Org. Lett. 2012; 14: 1728-1731.