International Journal of Advance Research in Science and Engineering 4,

Vol. No.6, Issue No. 08, August 2017 IJARSE
e ISSN (0) 2319 - 8354
www.ijarse.com ISSN (P) 2319 - 8346

Contingency Ranking for Power System Using Multilayer

Feed Forward Neural Network
Prem Prakash®, Rekha Jha?

12 Department of Electrical Engineering, B | T Sindri, (India)

ABSTRACT

This paper presents a supervising learning approach using Multilayer Feed Forward Neural Network(MFFN)
and to deal with fast and accurate static security assessment (SSA) and contingency analysis of a large electric
power systems. The degree of severity of contingencies is measured by two scalar performance indices (PIs):
Active power performance index Plp and voltage performance index, Ply. For each (N-1) contingency, the
Performance Index (PI) is computed using the Newton Raphson load flow (NRLF) method.N-1 line outage
contingencies are used as input features to train the neural network models, to predict the performance indices
for unseen network conditions and rank them in descending order based on performance indices for security
assessment. The proposed method has been applied on an IEEE 57-bus test system at different operating
conditions comparing to single line outage and the results demonstrate the suitability of the methodology for on-
line power system security assessment at Energy Management Center. The performance of the proposed ANN
model is compared with Newton Raphson (NR) method and the results shows that the proposed model is
effective and reliable in terms of static security assessment of power systems.

Keywords: Performancelndex, Static Security Assessment, Contingency Analysis, Supervised
Learning, Multilayer Feed Forward Neural Network.

I. INTRODUCTION

Security assessment of a power systemplays an important role for on-line applicationsat Energy Management
Centerwhich employs to examine the steady state performance of a power system after contingency. Now days,
electric power system move towards a new environment that is deregulation which has forced modern electric
utilities to operate their systems under highly stressed conditions closer to their security limits. Therefore, the
system operators needs to develop quick and more precise ranking methods for analyzing the power system
security violations and severity level of contingencies to keep the power system in safe operating limits. In the
area of the power system static security assessment, the contingency analysis plays a vital role, the importance
of which is discussed in [1].

The contingency analysis gives the security state of the power system under a contingency. The several load
flow methods to perform the contingency analysis such as the Gauss-Seidal (GS), the Newton-Raphson (NR)
and the fast decoupled (FD) methods [2] were used. These methods are used to obtain the load flow solutions
under the contingency conditions, which helps in computation of the system severity. Using AC load flow
solution in to determine the outage cases with respect to the reactive power and voltage magnitudes are
discussed in [3]. In [4, 5], in order to calculate the distribution factors the accurate methods are discussed which

are based on the decoupled and the Newton-Raphson load flow considering network sensitivities. Computation
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of the post-outage reactive power flows and the voltage magnitudes following a transmission line or a generator
outage are done with obtained distribution factors.

The AC load flow method is not feasible to perform online, because it should be solved for each contingency
case in order to evaluate the limit violations. To overcome this computational barrier various approximate
methods have been developed. There available two techniques known as the explicit and the implicit techniques.
The explicit methods are discussed in [6, 7].These are the ranking methods, where the contingencies are ranked
based on the order of severity using a scalar performance index (PI), which measures the system stress. Higher
severity is ranked first and going down the list with the least severity. Whereas, implicit methods are discussed
in [8, 9]. This method applies network solutions in order to recognize the system violations and rank the severity

for the various outages.

The ideal approach for the static security assessment of a power network is by contingency ranking. The
concept of the contingency ranking was introduced by Ejebe and Wollenberg, in which the contingencies are
arranged in descending order by considering the performance index [10]. In [6,7,10,11] automatic contingency
selection focused mostly on implementing algorithms in order to rank the contingencies based on the impact
on active power flows and then extending the algorithms to rank the contingencies based on its impact on bus
voltages. A direct ranking method, in which the performance index for a contingency case do not require post
contingency voltages at each bus for ranking, have proposed by Yilang chen et al. in [12] . In [13] the authors
have applied the decoupled load flow and the compensation method in order to obtain post outage voltages,
and the ranking is given based on performance index. Conventionally, the contingency ranking approach is
performed based on the performance indices (PI) obtained after solving the load flow solutions In this
approach, the contingencies are ranked based on the severity obtained from network variables and are directly
assessed. These methods are highly complex, time consuming and the system operating conditions have
variation with time. So the conventional methods infeasible for real time implementation. Thus, there is a need
to develop efficient online tool (which monitor the system security under variable system conditions) for the
power system security assessment to ensure safe operation of the power system [14].

Thus in the recent years, the literature revealed the application of the artificial neural networks (ANN) to
power system static security assessment. The computation speed and generalization capability of ANN makes
it feasible for the modern power systems for the security monitoring [15]. In [16, 17], the authors have
investigated the application of pattern recognition technique with forward only counter propagation network
for the active power contingency ranking. The efficient performance of the ANN is observed because of the
suitable selection of training features which covers the entire operating states of the powersystem.

The collective use of supervised and unsupervised learning in power system analysis has been used to
overcome the slow rate of convergence and local minima problem faced in multilayer perceptron neural
network using back propagation training [18].

1. POWER SYSTEM SECURITY ASSESSMENT BY CONTINGENCY RANKING
APPROACH USING NEWTON RAPHSON LOAD FLOW METHOD

The Contingency analysis with the use of AC power flow gives the advantage that it provides power flows in
terms of MW, MVAR and bus voltage magnitudes. Using the AC power flow, overloads and accurate voltage

limit violations. In the present work, for the contingency ranking outages of each line has been considered.
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Performance indices (PI) are considered for ranking the severity of a particular contingency. Conventional
power flow methods are used in calculating the indices in an offline mode. After obtaining the values obtained
using conventional method are sorted out in descending manner and the highest value of PI is ranked first.

There are two types of performance index which are mainly used to obtain contingency severity.

Active Power performance index (Pl,):This is the index which helps in determining the extent of line

overloading.
Pr= (B (Es)

Where,
F is the MW power flow of line |

F™*is the MW capacity of line |
NN is the number of lines of the system
Wis the real non-negative weighting factor, and value is (= 1)

nis exponent of penalty function and value is (=1)

prex = U0 )

Where,

V;is the voltage at bus i"obtained from the NR solution
Vis the voltage at bus j"obtained from the NR solution
Xis the reactance of the line connecting i"bus and j"bus.

Voltage performance index (Ply):This is the index which helps in determining the extent of bus voltage limit

violation.

wg ey (vl =[Pl
P, =52 (5) (M—n] (3)
Where,

I¥; lis the voltage magnitude at i"bus.

V¥ |is the specified (rated) voltage magnitude at i"bus.
AV™is the deviation limit of the voltage.

nis the exponent of penalty function and value is (=1)
Nzis the number of buses in the system taken.

Wthe real non-negative weighting factor and the value is (= 1)
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flow data .
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considered?

Rank the contingencies |
based on the severity

Fig.1. Flow chart for the power system contingency ranking using the NRLF method.

The algorithm for contingency analysis using Newton Raphson load flow solution is as follows:
Step 1: Read the given system’s line data and bus data.

Step 2: Without considering the line contingency perform the load flow analysis for base case.
Step 3: Simulating a line outage or line contingency, i.e. removing a line and proceeding to the
next step.

Step 4: Load flow analysis is done for this particular outage, then calculation of the active power

P™ s found out.

flow is done in the remaining lines and value

Step 5: The active power performance index (Plp) is found, which indicates the active power limit

Step 6: subsequently for the particular line contingency; voltages of all the load buses are
calculated.

Step 7: Then voltage performance index (Ply) is being calculated which indicates the voltage limit

violation at all the load buses due to the line contingencies.

Step 8: Computation of overall performance index is done by adding Pl and PIy, for each line

outage of the system.

Step 9: Steps 3 to 8 for all line outages is repeated to obtain the Ply and Pl for all line outages.

I11. ONLINE PSSSA MODULE USING MULTILAYER FEED FORWARD NEURAL
NETWORK
TheFigure 2showstheblockdiagramoftherankingmodule. Theinputfeaturesforthe

modulecomprises(coveringentireoperatingscenarios)ofactiveandreactivepoweratall theloadbus(P,,
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Q)andgeneratorbuses(Ps, Qg)thevoltagemagnitudes|V| atallthebuses alongwiththeN-
1lineoutagecontingency(K;). Themodulehastheability topredictthe performance indices to assess the security
status by contingency ranking for a given operating

condition. ThemoduleusestwoANNarchitectureswhichtakesthelineoutage condition and the loading condition as
the inputs a long with other operating conditions and performance indices as the output parameter.The neural
network model isused by the module is the MFNN. These two networks are trained for various range of
operating condition stop redict the performance indices.

The key functions of the module are that:

(1) It calculates the system severity for each operating condition.

(2) It calculate sseverity indicesunderN-1lineoutage contingency.

(3) The model rank the contingencies based on the irorder of severity.

K

Security
Status
ANN
Architecture
Model
Contingency
Ranking

Fig. 2.Architecture of ANN based contingency ranking

IV. MULTI-LAYER FEED FORWARD NETWORK (MFNN)

This paper proposes, MFNN model consisting of three layers, namely input layer, hidden layer and an output
layer, with the sigmoidal activation function for all the neurons except for those neurons in the input layer for
power system static security assessment.

S(x) =

1

1+~

4)

Each layer is connected with each neuron of the previous layer with weights attached to it. The inputs to the

model is the system operating conditions as shown in Fig.3., with performance indices as output.

718 |Page




International Journal of Advance Research in Science and Engineering 4,

Vol. No.6, Issue No. 08, August 2017 JARSE
- ISSN (0) 2319 - 8354
WWW.lJarse.Com ISSN (P) 2319 - 8346

Pg

Output Layer

o

S/

Input Layer

VI
idden Layer

Fig.3. MFNN model for the calculation of performance indices
The MFNN consists of momentum factore:;, and the learning rate parameter 774, which have a very crucial effect
on the learning rate of the BPA. The BPA contribute an approximation to the trajectory in the weight space
calculated by the method of steepest descent. If the considered value of #; is very small, which results in slow
rate of learning, while if the value of #; is too large in order to speed up the rate of learning, the MFNNmay
become unstable. A simple method of increasing the rate of learning without making the MFNN unstable is by
adding the momentum factor & . Preferably, the values of 77y and & should lie between 0 and 1.
The weights between the hidden layer and the output layer are updated as in (5);
Wy (j, k,m+1) = wy(j,k,m)+ 1y = & 0md = 5,070 + e, (wy(j, k, m) — wy(j.k.m-1))(5)
Where j varies from 1 to Ny, and k varies from 1 to Ny. Similarly, the weights between the hidden layer and the
input layer are updated as in (6);
Wa(i j,m+1) = wy(i, j, m)+ ny = &;(m) = 5 G0 + aq (wq(i, §, m) — w(i,j,m-1))(6)
The &;(m) in (5) and &;(m) in (6) are related as in (7);
&,(m) = EE_, 6;(m) = w(j. k. m)(7)
Where i varies from 1 to N;. The mean square error (MSE) E,for the training patterns after the mth iteration is

given as,
E,.(m) = (fp] - [Efil{k'm - X:_u':m]}:] ©

The training is stopped when the least value of Eis obtained and this value does not change much with the

number of iterations. The flow chart for above approach is shown in Fig.4.

719 |Page




International Journal of Advance Research in Science and Engineering 44,

Vol. No.6, Issue No. 08, August 2017

www.ijarse.com

Start

Y

Initialize network weights, network parameters and fix number
of iterations

Y
Update weights using Back
Propagation Algorithm

Compute modeled value of the
performance indices for all
training patterns

Vary the network
parameters

Mean Square
Error for training
pattems < €

Fig.5. Topology of IEEE 57 Bus system

IJARSE
ISSN (0) 2319 - 8354
ISSN (P) 2319 - 8346

720 | Page




International Journal of Advance Research in Science and Engineering 4,
Vol. No.6, Issue No. 08, August 2017

www.ijarse.com

Simulation results

Table 1. Contingency ranking of IEEE-57 bus system.

TJARSE

ISSN (0) 2319 - 8354
ISSN (P) 2319 - 8346

Line Active power Pl by | Active power Pl by Line Voltage Pl by Voltage PI by
outage NRLF MFNN Outage NRLF MFNN
L 4-6 10.7965 10.6519 L 7-29 54.9871 52.5264
L 5-6 9.8042 9.8042 L 37-38 48.9461 48.9458
L 8-9 8.5838 8.5838 L 36-37 26.5853 26.5859
L 7-29 7.1972 7.1972 L 28-29 23.8761 23.8761
L34 6.4139 6.4139 L 4-6 19.4136 19.4139
L 37-38 6.3318 6.3318 L 27-28 14.9879 14.9873
L 36-37 6.2134 6.2134 L 22-38 11.9843 11.9893
L 1-15 6.1615 6.1615 L 1-15 10.8391 10.8385
L 1-17 6.0872 6.0872 L 8-9 10.8382 10.8376
L 28-29 5.8231 5.8231 L 5-6 9.8313 9.8303
L7-8 5.8192 5.8192 L 46-47 9.7133 9.7124
L 27-28 5.8137 5.8137 L 14-46 9.4376 9.4365
L 1-16 5.7651 5.7651 L 22-23 9.3313 9.3308
L 22-38 5.7281 5.7281 L 26-27 7.5331 7.5328
L 46-47 5.7221 5.7221 L 38-48 6.8442 6.8440
L 14-46 5.7315 5.7315 L 13-49 6.8431 6.8429
L 22-23 5.5310 5.5310 L7-8 6.8305 6.8302
L 4-18 5.6105 5.6105 L 30-31 6.7018 6.7015
L 14-15 5.5112 5.5112 L 24-26 6.6937 6.6830
L2-3 5.5016 5.5016 L 1-17 6.5837 6.5868
L 9-55 5.4763 5.4763 L 12-13 6.5861 6.5859
L 41-42 5.4750 5.4750 L 44-45 6.4952 6.4948
L 29-52 5.4631 5.4631 L 15-45 6.3831 6.3829
L 10-51 5.4626 5.4626 L 3-4 5.9152 5.9189
L 11-43 5.4619 5.4619 L 18-19 5.8137 5.8132
L 44-45 5.4531 5.4531 L 47-48 5.7663 5.7661
L 15-45 5.4401 5.4401 L 10-51 5.6241 5.6239
L 38-48 5.3966 5.3966 L 14-15 5.5193 5.5189
L 41-43 5.3951 5.3951 L 38-44 5.4931 5.4929
L 13-49 5.3856 5.3856 L 24-25 5.4852 5.4849
L 52-53 5.3840 5.3840 L 41-42 5.4276 5.4273
L 18-19 5.3718 5.3718 L 24-25 5.3853 5.3849
L 47-48 5.3701 5.3701 L 1-16 5.3637 5.3631
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L 49-50 5.3652 5.3652 L 21-22 5.2597 5.2593
L 38-44 5.3652 5.3652 L 23-24 5.1863 5.1864
L 21-20 5.3551 5.3551 L 11-43 5.1501 5.1506
L 21-22 5.3542 5.3542 L 36-40 4.9943 5.9938

L 6-8 5.3441 5.3441 L 10-12 4.9491 5.9487
L9-11 5.3415 5.3415 L 4-48 4.9376 5.9373
L 56-41 5.3412 5.3412 L 21-20 4.9181 4.9179
L 13-15 5.3387 5.3387 L 13-15 4.8881 4.8876
L 9-10 5.3321 5.3321 L 38-49 4.8721 4.8719
L 31-32 5.3216 5.3216 L 12-17 4.8097 4.8094
L 24-26 5.3066 5.3066 L 41-43 4.7918 4.7914
L 26-27 5.3066 5.3066 L 52-53 4.7801 4.7789
L 24-25 5.2934 5.2934 L 50-51 4.7731 4.7329
L 12-13 5.2915 5.2915 L 9-10 4.7321 4.7318

L 6-7 5.2910 5.2910 L 31-32 4.7208 4.7206
L 54-55 5.2901 5.2901 L 29-52 4.7113 4.7109
L 30-31 5.2893 5.2893 L 4-18 4.6918 4.6914
L 48-49 5.2876 5.2876 L11-4 4.6837 4.6831
L 11-13 5.2853 5.2853 L 13-14 4.6813 4.6809
L 23-24 5.2853 5.2853 L 2-3 4.6710 4.6704
L 37-39 5.2839 5.2839 L 37-39 4.6370 4.6367
L 39-57 5.2835 5.2835 L9-11 4.6342 4.6338
L 56-42 5.2822 5.2822 L 49-50 4.6118 4.6117
L 57-56 5.2819 5.2819 L 56-41 4.5986 4.5983
L 9-13 5.2813 5.2813 L 54-55 4.5977 4.5973
L 12-17 5.2791 5.2791 L 9-55 4.9534 4.5927
L 19-20 5.2780 5.2780 L 6-8 4.5418 4.5413
L 13-14 5.2755 5.2755 L 48-49 4.5393 4.5391
L 12-16 5.2741 5.2741 L 53-54 4.5816 4.5182
L 38-49 5.2738 5.2738 L 57-56 4.5094 4.5090
L 10-12 5.2729 5.2729 L 3-15 4.4996 4.4991
L 24-25 5.2719 5.2719 L 56-42 4.4873 4.4871
L 9-12 5.2714 5.2714 L 9-13 4.4239 4.4138
L 4-18 5.2698 5.2698 L11-13 4.4016 4.3914
L 3-15 5.2665 5.2665 L 12-16 4.3998 4.3896
L11-4 5.2635 5.2635 L 19-20 4.3973 4.3868
L 40-56 5.2621 5.2621 L 9-12 4.3762 4.3658
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| Active power Pl by MFNN
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Fig.5. Comparison of Active Power Performance Index and Contingency Ranking.

Line Outage

Voltage Pl by MFNN

Voltage Pl by NRLF

Fig.6. Comparison of voltage performance Index and contingency ranking.
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V. CONCLUSION

Performanceindicesandcontingencyrankingforthebasecase loadcondition for IEEE 57 Bus System is shown

inTablel.The1t and4th columnsofthe tableshowthe variouslineoutages.2ndandSthcqumns of the table
1shows rank based on severity using active power performance index and voltage performance index computed

3rd 6th

using NRLF analysis. The and columns of the Tablelshows the active power and voltage performance
indices values obtained using the MFNN model. It can be observed that for all the critical contingencies, the
predicted values and ranking are almost equal by the module using MFNN model in comparison with columns
2and5 respectively. Here, the top critical contingencies need to be given higher priority during security
evaluation. Further, the time taken by the model is found to bel.49sec (IEEE-57 bus system)for
100iterations.So, the ranking module for security assessment by contingency ranking is very quick and
accurate for unseen system conditions. From the simulation results and above discussion, for various system
operating conditions, the ranking module using MFNN is found to be quick and efficient approach to predict
the performance indices and rank the contingencies. Thus, this MFNN ranking module is found feasible for

online implementation for security assessment by contingency ranking.
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