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ABSTRACT 

This paper presents a supervising learning approach using Multilayer Feed Forward Neural Network(MFFN) 

and to deal with fast and accurate static security assessment (SSA) and contingency analysis of a large electric 

power systems. The degree of severity of contingencies is measured by two scalar performance indices (PIs): 

Active power performance index PIP and voltage performance index, PIV. For each (N-1) contingency, the 

Performance Index (PI) is computed using the Newton Raphson load flow (NRLF) method.N-1 line outage 

contingencies are used as input features to train the neural network models, to predict the performance indices 

for unseen network conditions and rank them in descending order based on performance indices for security 

assessment. The proposed method has been applied on an IEEE 57-bus test system at different operating 

conditions comparing to single line outage and the results demonstrate the suitability of the methodology for on-

line power system security assessment at Energy Management Center. The performance of the proposed ANN 

model is compared with Newton Raphson (NR) method and the results shows that the proposed model is 

effective and reliable in terms of static security assessment of power systems. 

Keywords: PerformanceIndex, Static Security Assessment, Contingency Analysis, Supervised 

Learning, Multilayer Feed Forward Neural Network. 

 

I. INTRODUCTION 

Security assessment of a power systemplays an important role for on-line applicationsat Energy Management 

Centerwhich employs to examine the steady state performance of a power system after contingency. Now days, 

electric power system move towards a new environment that is deregulation which has forced modern electric 

utilities to operate their systems under highly stressed conditions closer to their security limits. Therefore, the 

system operators needs to develop quick and more precise ranking methods for analyzing the power system 

security violations and severity level of contingencies to keep the power system in safe operating limits. In the 

area of the power system static security assessment, the contingency analysis plays a vital role, the importance 

of which is discussed in [1]. 

The contingency analysis gives the security state of the power system under a contingency. The several load 

flow methods to perform the contingency analysis such as the Gauss-Seidal (GS), the Newton-Raphson (NR) 

and the fast decoupled (FD) methods [2] were used. These methods are used to obtain the load flow solutions 

under the contingency conditions, which helps in computation of the system severity. Using AC load flow 

solution in to determine the  outage cases with respect to the reactive power and voltage magnitudes are 

discussed in [3]. In [4, 5], in order to calculate the distribution factors the accurate methods are discussed which 

are based on the decoupled and the Newton-Raphson load flow considering network sensitivities. Computation 
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of the post-outage reactive power flows and the voltage magnitudes following a transmission line or a generator 

outage are done with obtained distribution factors. 

The AC load flow method is not feasible to perform online, because it should be solved for each contingency 

case in order to evaluate the limit violations. To overcome this computational barrier various approximate 

methods have been developed. There available two techniques known as the explicit and the implicit techniques. 

The explicit methods are discussed in [6, 7].These are the ranking methods, where the contingencies are ranked 

based on the order of severity using a scalar performance index (PI), which measures the system stress. Higher 

severity is ranked first and going down the list with the least severity. Whereas, implicit methods are discussed 

in [8, 9]. This method applies network solutions in order to recognize the system violations and rank the severity 

for the various outages. 

The ideal approach for the static security assessment of a power network is by contingency ranking. The 

concept of the contingency ranking was introduced by Ejebe and Wollenberg, in which the contingencies are 

arranged in descending order by considering the performance index [10]. In [6,7,10,11] automatic contingency 

selection focused mostly  on implementing algorithms in order to rank the contingencies based on the impact 

on active power flows and then extending the algorithms to rank the contingencies based on its impact on bus 

voltages. A direct ranking method, in which the performance index for a  contingency case do not require post 

contingency voltages at each bus for ranking, have proposed by Yilang chen et al. in [12] . In [13] the authors 

have applied the decoupled load flow and the compensation method in order to obtain post outage voltages, 

and the ranking is given based on performance index. Conventionally, the contingency ranking approach is 

performed based on the  performance indices (PI) obtained after solving the load flow solutions In this 

approach, the contingencies are ranked based on the severity obtained from network variables and are directly 

assessed. These methods are highly complex, time consuming and the system operating conditions have 

variation with time. So the conventional methods infeasible for real time implementation. Thus, there is a need 

to develop efficient online tool (which monitor the system security under variable system conditions) for the 

power system security assessment to ensure safe operation of the power system [14].  

Thus in the recent years, the literature revealed the application of the artificial neural networks (ANN) to 

power system static security assessment. The computation speed and generalization capability of ANN makes 

it feasible for the modern power systems for the security monitoring [15]. In [16, 17], the authors have 

investigated the application of pattern recognition technique with forward only counter propagation network 

for the active power contingency ranking. The efficient performance of the ANN is observed because of the 

suitable selection of training features which covers the entire operating states of the powersystem. 

The collective use of supervised and unsupervised learning in power system analysis has been used to 

overcome the slow rate of convergence and local minima problem faced in multilayer perceptron neural 

network using back propagation training [18]. 

II. POWER SYSTEM SECURITY ASSESSMENT BY CONTINGENCY RANKING 

APPROACH USING NEWTON RAPHSON LOAD FLOW METHOD 

The Contingency analysis with the use of AC power flow gives the advantage that it provides power flows in 

terms of MW, MVAR and bus voltage magnitudes. Using the AC power flow, overloads and accurate voltage 

limit violations. In the present work, for the contingency ranking outages of each line has been considered. 



 
 

716 | P a g e  
 

Performance indices (PI) are considered for ranking the severity of a particular contingency. Conventional 

power flow methods are used in calculating the indices in an offline mode. After obtaining the values obtained 

using conventional method are sorted out in descending manner and the highest value of PI is ranked first. 

There are two types of performance index which are mainly used to obtain contingency severity. 

Active Power performance index (PIp):This is the index which helps in determining the extent of line 

overloading. 

     (1) 

Where, 

is the MW power flow of line l 

is the MW capacity of line l 

is the number of lines of the system 

is the real non-negative weighting factor, and value is (= 1) 

is exponent of penalty function and value is (=1) 

 (2) 

 Where, 

is the voltage at bus i
th

obtained from the NR solution 

is the voltage at bus j
th

obtained from the NR solution 

is the reactance of the line connecting i
th

bus and j
th

bus. 

Voltage performance index (PIV):This is the index which helps in determining the extent of bus voltage limit 

violation. 

 (3) 

Where, 

is the voltage magnitude at i
th

bus. 

is the specified (rated) voltage magnitude at i
th

bus. 

is the deviation limit of the voltage. 

is the exponent of penalty function and value is (=1) 

is the number of buses in the system taken. 

the real non-negative weighting factor and the value is (= 1) 
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Fig.1. Flow chart for the power system contingency ranking using the NRLF method. 

The algorithm for contingency analysis using Newton Raphson load flow solution is as follows:  

Step 1: Read the given system’s line data and bus data. 

Step 2: Without considering the line contingency perform the load flow analysis for base case. 

Step 3: Simulating a line outage or line contingency, i.e. removing a line and proceeding to the        

next step. 

Step 4: Load flow analysis is done for this particular outage, then calculation of the active power  

flow is done in the remaining lines and value P
max 

is found out. 

Step 5: The active power performance index (PIP) is found, which indicates the active power limit     

Step 6: subsequently for the particular line contingency; voltages of all the load buses are 

calculated. 

Step 7: Then voltage performance index (PIV) is being calculated which indicates the voltage limit  

violation at all the load buses due to the line contingencies. 

Step 8: Computation of overall performance index is done by adding PIP and PIV for each line  

outage of the system. 

Step 9: Steps 3 to 8 for all line outages is repeated to obtain the PIP and PIV for all line outages. 

 

III. ONLINE PSSSA MODULE USING MULTILAYER FEED FORWARD NEURAL 

NETWORK 

TheFigure 2showstheblockdiagramoftherankingmodule.Theinputfeaturesforthe 

modulecomprises(coveringentireoperatingscenarios)ofactiveandreactivepoweratall theloadbus(PL, 
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QL)andgeneratorbuses(PG, QG),thevoltagemagnitudes|V| atallthebuses alongwiththeN-

1lineoutagecontingency(Ki).Themodulehastheability topredictthe performance indices to assess the security  

status by  contingency  ranking for a given operating 

condition.ThemoduleusestwoANNarchitectureswhichtakesthelineoutage condition and the loading condition as 

the inputs a long with other operating conditions and performance indices as the output parameter.The neural 

network model isused by the module  is the MFNN. These two networks are trained for various range of 

operating condition stop redict the performance indices. 

The key functions of the module are that: 

(1)  It calculates the system severity for each operating condition. 

(2)  It calculate sseverity indicesunderN-1lineoutage contingency.  

(3)  The model rank the contingencies based on the irorder of severity. 

 

Fig. 2.Architecture of ANN based contingency ranking 

 

IV. MULTI-LAYER FEED FORWARD NETWORK (MFNN) 

This paper proposes, MFNN model consisting of three layers, namely input layer, hidden layer and an output 

layer, with the sigmoidal activation function for all the neurons except for those neurons in the input layer for 

power system static security assessment. 

             (4) 

Each layer is connected with each neuron of the previous layer with weights attached to it. The inputs to the 

model is the system operating conditions as shown in Fig.3., with performance indices as output.  



 
 

719 | P a g e  
 

 

Fig.3. MFNN model for the calculation of performance indices 

The MFNN consists of momentum factor , and the learning rate parameter , which have a very crucial effect 

on the learning rate of the BPA. The BPA contribute an approximation to the trajectory in the weight space 

calculated by the method of steepest descent. If the considered value of  is very small, which results in slow 

rate of learning, while if the value of  is too large in order to speed up the rate of learning, the MFNNmay 

become unstable. A simple method of increasing the rate of learning without making the MFNN unstable is by 

adding the momentum factor . Preferably, the values of and should lie between 0 and 1.  

The weights between the hidden layer and the output layer are updated as in (5); 

wb(j,k,m+1)  wb(j,k,m) (wb(j, k, m) wb(j,k,m-1))(5) 

Where j varies from 1 to Nh and k varies from 1 to Nk. Similarly, the weights between the hidden layer and the 

input layer are updated as in (6); 

wa(i,j,m+1)  wb(i, j, m) (wa(i, j, m) wb(i,j,m-1))(6) 

The  in (5) and  in (6) are related as in (7);  

(7) 

Where i varies from 1 to Ni. The mean square error (MSE) Etrfor the training patterns after the mth iteration is 

given as, 

 (8) 

The training is stopped when the least value of Etris obtained and this value does not change much with the 

number of iterations. The flow chart for above approach is shown in Fig.4. 
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Fig.4. Flow chart for MFNN 

Fig.5. Topology of IEEE 57 Bus system 
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Simulation results 

Table 1. Contingency ranking of IEEE-57 bus system. 

Line 

outage 

Active power PI by 

NRLF 

Active power PI by 

MFNN 

Line 

Outage 

Voltage PI by 

NRLF 

Voltage PI by    

MFNN 

L 4-6 10.7965 10.6519 L 7-29 54.9871 52.5264 

L 5-6 9.8042 9.8042 L 37-38 48.9461 48.9458 

L 8-9 8.5838 8.5838 L 36-37 26.5853 26.5859 

L 7-29 7.1972 7.1972 L 28-29 23.8761 23.8761 

L 3-4 6.4139 6.4139 L 4-6 19.4136 19.4139 

L 37-38 6.3318 6.3318 L 27-28 14.9879 14.9873 

L 36-37 6.2134 6.2134 L 22-38 11.9843 11.9893 

L 1-15 6.1615 6.1615 L 1-15 10.8391 10.8385 

L 1-17 6.0872 6.0872 L 8-9 10.8382 10.8376 

L 28-29 5.8231 5.8231 L 5-6 9.8313 9.8303 

L 7-8 5.8192 5.8192 L 46-47 9.7133 9.7124 

L 27-28 5.8137 5.8137 L 14-46 9.4376 9.4365 

L 1-16 5.7651 5.7651 L 22-23 9.3313 9.3308 

L 22-38 5.7281 5.7281 L 26-27 7.5331 7.5328 

L 46-47 5.7221 5.7221 L 38-48 6.8442 6.8440 

L 14-46 5.7315 5.7315 L 13-49 6.8431 6.8429 

L 22-23 5.5310 5.5310 L 7-8 6.8305 6.8302 

L 4-18 5.6105 5.6105 L 30-31 6.7018 6.7015 

L 14-15 5.5112 5.5112 L 24-26 6.6937 6.6830 

L 2-3 5.5016 5.5016 L 1-17 6.5837 6.5868 

L 9-55 5.4763 5.4763 L 12-13 6.5861 6.5859 

L 41-42 5.4750 5.4750 L 44-45 6.4952 6.4948 

L 29-52 5.4631 5.4631 L 15-45 6.3831 6.3829 

L 10-51 5.4626 5.4626 L 3-4 5.9152 5.9189 

L 11-43 5.4619 5.4619 L 18-19 5.8137 5.8132 

L 44-45 5.4531 5.4531 L 47-48 5.7663 5.7661 

L 15-45 5.4401 5.4401 L 10-51 5.6241 5.6239 

L 38-48 5.3966 5.3966 L 14-15 5.5193 5.5189 

L 41-43 5.3951 5.3951 L 38-44 5.4931 5.4929 

L 13-49 5.3856 5.3856 L 24-25 5.4852 5.4849 

L 52-53 5.3840 5.3840 L 41-42 5.4276 5.4273 

L 18-19 5.3718 5.3718 L 24-25 5.3853 5.3849 

L 47-48 5.3701 5.3701 L 1-16 5.3637 5.3631 
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L 49-50 5.3652 5.3652 L 21-22 5.2597 5.2593 

L 38-44 5.3652 5.3652 L 23-24 5.1863 5.1864 

L 21-20 5.3551 5.3551 L 11-43 5.1501 5.1506 

L 21-22 5.3542 5.3542 L 36-40 4.9943 5.9938 

L 6-8 5.3441 5.3441 L 10-12 4.9491 5.9487 

L 9-11 5.3415 5.3415 L 4-48 4.9376 5.9373 

L 56-41 5.3412 5.3412 L 21-20 4.9181 4.9179 

L 13-15 5.3387 5.3387 L 13-15 4.8881 4.8876 

L 9-10 5.3321 5.3321 L 38-49 4.8721 4.8719 

L 31-32 5.3216 5.3216 L 12-17 4.8097 4.8094 

L 24-26 5.3066 5.3066 L 41-43 4.7918 4.7914 

L 26-27 5.3066 5.3066 L 52-53 4.7801 4.7789 

L 24-25 5.2934 5.2934 L 50-51 4.7731 4.7329 

L 12-13 5.2915 5.2915 L 9-10 4.7321 4.7318 

L 6-7 5.2910 5.2910 L 31-32 4.7208 4.7206 

L 54-55 5.2901 5.2901 L 29-52 4.7113 4.7109 

L 30-31 5.2893 5.2893 L 4-18 4.6918 4.6914 

L 48-49 5.2876 5.2876 L 11-4 4.6837 4.6831 

L 11-13 5.2853 5.2853 L 13-14 4.6813 4.6809 

L 23-24 5.2853 5.2853 L 2-3 4.6710 4.6704 

L 37-39 5.2839 5.2839 L 37-39 4.6370 4.6367 

L 39-57 5.2835 5.2835 L 9-11 4.6342 4.6338 

L 56-42 5.2822 5.2822 L 49-50 4.6118 4.6117 

L 57-56 5.2819 5.2819 L 56-41 4.5986 4.5983 

L 9-13 5.2813 5.2813 L 54-55 4.5977 4.5973 

L 12-17 5.2791 5.2791 L 9-55 4.9534 4.5927 

L 19-20 5.2780 5.2780 L 6-8 4.5418 4.5413 

L 13-14 5.2755 5.2755 L 48-49 4.5393 4.5391 

L 12-16 5.2741 5.2741 L 53-54 4.5816 4.5182 

L 38-49 5.2738 5.2738 L 57-56 4.5094 4.5090 

L 10-12 5.2729 5.2729 L 3-15 4.4996 4.4991 

L 24-25 5.2719 5.2719 L 56-42 4.4873 4.4871 

L 9-12 5.2714 5.2714 L 9-13 4.4239 4.4138 

L 4-18 5.2698 5.2698 L 11-13 4.4016 4.3914 

L 3-15 5.2665 5.2665 L 12-16 4.3998 4.3896 

L 11-4 5.2635 5.2635 L 19-20 4.3973 4.3868 

L 40-56 5.2621 5.2621 L 9-12 4.3762 4.3658 
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L 36-40 5.2539 5.2539 L 6-7 4.3518 4.3416 

L 53-54 5.2534 5.2534 L 39-57 4.3216 4.3109 

L 50-51 5.2435 5.2435 L 40-56 4.3096 4.2914 

 

 

Fig.5. Comparison of Active Power Performance Index and Contingency Ranking. 
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Fig.6. Comparison of voltage performance Index and contingency ranking. 
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V. CONCLUSION 

Performanceindicesandcontingencyrankingforthebasecase loadcondition for IEEE 57 Bus System is shown 

inTable1.The1
st 

and4
th 

columnsoft h e  tableshowthe variouslineoutages.2
nd

and5
th

columns of the table 

1shows rank based on severity using active power performance index and voltage performance index computed 

using NRLF analysis. The 3
rd 

and 6
th 

columns of the Table1shows the active power and voltage performance 

indices values obtained using the MFNN model. It can be observed that for all the critical contingencies, the 

predicted values and ranking are almost equal by the module using MFNN model in comparison with columns 

2and5 respectively. Here, the top critical contingencies need to be given higher priority during security 

evaluation. Further, the time taken by the model is found to be1.49sec (IEEE-57 bus system)for 

100iterations.So, the ranking module for security assessment by contingency ranking is very  quick and 

accurate for unseen system conditions. From the simulation results and above discussion, for various system 

operating conditions, the ranking module using MFNN is found to be quick and efficient approach to predict 

the performance indices and rank the contingencies. Thus, this MFNN ranking module is found feasible for 

online implementation for security assessment by contingency ranking. 
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