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ABSTRACT

Secret sharing schemes have been suggested for sensor networks where the links are liable to be tapped by
sending the data in shares which makes the task of the eavesdropper harder. The security in such environments
can be made greater by continuous changing of the way the shares are constructed. In the present paper we
proposed a verifiable quantum (t, n) -threshold secret sharing scheme using Lagrange interpolation and two
qudit Bell state in P -dimensional Hilbert space. The proposed scheme is enough secure against the fraud in
secret share distribution phase as well as secret reconstruction phase.
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I. INTRODUCTION

With the improvement of computing ability and algorithms, especially the presentation of quantum algorithms
[9, 11], the security of classical cryptography encounters serious challenges. Under this background, more and
more attention is paid to the theory of quantum information. However, the design and cryptanalysis of quantum
cryptography is far from satisfactory, especially in quantum secret sharing. Obviously, quantum secret sharing
may play an important role in protecting secret information so that the works about quantum secret sharing have

attracted a lot of attention in theoretical and experimental ways. The concept of secret sharing was first

introduced by independently by Shamir [10] and Blakley[2]. In a conventional (t, n) - threshold secret sharing

scheme a trusted dealer divides a secret S into N -shares and distributes them among N -agents such that any

coalition of T or more agents can together reconstruct the original secret S but no coalition of fewer than t -
agents can. Verifiable secret sharing schemes are important in cloud computing environments. Thus a key can
be distributed over many servers by threshold secret sharing mechanism. The key is then reconstructed when
needed. The concept of quantum secret sharing was first introduced by Hillery et al. [5], who showed how to
implement a conventional threshold scheme using Greenberger-Horne-Zeilinger (GHZ) states in the presence of
the outside and inside eavesdroppers. They also showed how to share an unknown qubit between two agents
such that only the collaboration of two agents could reconstruct the original qubit. Subsequently a lot of
quantum secret sharing schemes have been proposed [6, 7, 8, 12, 13] but they all have lack of verification
characteristic which is assumed very crucial property of any cryptographic scheme in realistic applications. The
first verifiable quantum secret sharing scheme was proposed by Yang et al. [15]. The verifiable quantum secret

sharing scheme proposed by Yang et al. [15] was based upon Li’s scheme [15] and it has a drawback that it
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requires too much quantum authentication information for its implementation. Later on, Yang et al. [14]
proposed another modification of verifiable quantum secret sharing scheme in which a quantum tag is connected
to the quantum secret through a unitary operation, so that the quantum tag can be used as a signature to verify

the reconstructed quantum secret. A drawback of Yang et al. [14] scheme is that classical secret cannot be
shared in it. In the present paper we proposed a verifiable quantum (t, n) -threshold secret sharing scheme using

Lagrange interpolation and two qudit Bell state in P -dimensional Hilbert space.

I1. PRELIMINARIES
In this section we will discuss some auxiliary results and definitions which will be helpful in interpreting the
proposed scheme.

Definition 2.1: The generalized two qudit Bell state in P -dimensional Hilbert space is defined as

B, >\/_§e (Z”iuk)|k,k®v>

where  k@v=(k+v)mod p and uvef{0,1,2,.,p-1.

Definition 2.2: The generalized Pauli unitary operator in [P -dimensional Hilbert space is defined as

. =S| 20k ke |

k=0

where k@ g =(k+ g)mod p and a,p{0,1,2,..,p-1}.

Lemma 2.3 [9]: Ina P -dimensional Hilbert space, we have
(@). (m|k)=
). (Jm) (k| )[m) =[m) (K )= ((k|m))] m)

where &, isa Dirac function and m,k,ne{0,1,2,...,p-1}.

m
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Theorem 2.4: If an unitary operator U , , Z ( j| k ><k ) ,B| is operated on one particle of a
k=0

-1
two qudit Bell state ‘Bu,v> = %pZexp
k

(27zp| u k]|k1k (—DV), then Bell state ‘Bu]v>changes to a new
B

state, say ‘Bu®a'v®ﬂ> ie. Ua’ﬂ‘Bu'V> :‘ u@a,v®ﬁ>’ where K@ S = (k+ g)mod p and
a,p,uve{0,1,2,..,p-1}.

Proof. We have

1 -
U, ,= 3 e><p(2”p'akj|k><k®ﬂ|

_ - [em(zﬁja'o}lo)((’@ﬂ + e)@(z’f;“ -1j|1><1@/3| +
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. exp(%-(p—l)jlp—1><(p—1)@ﬂ|} (21)

and

2riu

-.-+e><p( ‘(p—l)jl(p—l),(p—l)@Vﬂ (2.2)

Bu,v> using relations (2.1), (2.2) and lemma 2.3, we obtain

U,,[B.)=—+ {exp(z”“z@“)-0]|0,0@<ﬂ@v>>+

Jp
m(Mp@”).l)p,l@ (BOV))+

Operating U, ;on

--.+e><p(Mp®u)-(p—l)jl(p—l),(p—l)@(ﬂ®V) >}

@D

_1 & Xp(Mp@u).k}k,k@(ﬁ@v){I

Thus we get

Ua,ﬂ‘ Bu,v> = ‘ Bu@a,v®ﬂ>'

This completes the proof of the theorem.

I11. CONSTRUCTION OF THE PROPOSED SECRET SHARING SCHEME

Suppose a dealer D wants to share his secret S among n -agents, say A A, ..., A . According to the theory
of conventional secret sharing scheme it is assumed that any coalition of { or more agents can together
reconstruct the original secret S but no coalition of fever than t agents can. The construction of the proposed
verifiable (t,Nn)-threshold quantum secret sharing scheme consists of the following phases:

Phase-1: Secret Share Distribution Phase.

To distribute the secret S , dealer goes through the following steps:

1. Forgiven t and n , dealer uses the Bertnard’s principle [1] to find an appropriate prime number P such

that n< p<2n.
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2. Using P (chosen as above), dealer construct a finite field F = Zp.
3. Choosing the numbers a, ,a,, ...,&,, in the field F | the dealer construct a polynomial as under
P(x)=S®ax@ax*®..®a, x""
where S is the secret to be shared among the agents.

4. Dealer again picks the numbers X, , X, , ..., X, in the field F such that

X . .
L = H m is an integer, where X # X, forall m =k .
1em<ni\ X _Xk

m=k
5. Dealer publicly announces all X, X, , ..., X,,.
Infactx,,X,, ..., X, are used as the ID of the agents A , A, , ..., An respectively.
6. Dealer calculates P(x,), P(X,), ..., P(X,).
7. Using the quantum secure direct communication techniques [3, 4], dealer sends P(x,),P(X,), ..., P(Xn)
tothe agents A, A, , ..., A, respectively.
Infact P(x,), P(X,), ..., P(Xn ) are the private shares of the agents A , A, , ..., An respectively.

Phase I1: Reconstruction of the original secret S .

According to the (t,n)-threshold secret sharing hypothesis, any coalition of t or more agents can together
reconstruct the original secret S and no coalition of fever than T agents can. If t -agents A , A,, ..., A

want to reconstruct the secret S, then this phase consists of the following steps:

1. Dealer randomly yields a two qudit Bell state in a P -dimensional Hilbert space, as under

B, >\/_i (2’”“ j|k,k®v>

where K@V =(k+v)modp and uve{0,1,2,..,p-1}.

2. Dealer randomly constructs some decoy particles in the Z -basis and X -basis,

where Z —basis:{|m>,m =0,1,2,..., p—l}, X -basis:{|Mm>,m =0,1,2,..., p—l}

and |M,) JBKZ (2’”’“ J|k>.

3. Dealer inserts the second particle of ‘ Bu,v> into the decoy particles.

4. Keeping in mind the record of insertion position of the second particle of ‘Bu,v> and initial states of the

decoy particles, dealer sends these particles to the agent A, .
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5. After ensuring that agent A has received these particles, dealer publishes the position and basis of the

decoy particles and tells agent A, to measure these particles in an appropriate Z -basis or X -basis
according to his basis.

6. After measuring the decoy particles, agent A publicly announces his measurement results.
7. Dealer matches the measurement results of agent A with his record and if these results do not match with

the initial states, he tells the agent A, to abort the process and start a new process; otherwise they carry on

the scheme.

8. After performing an unitary operation

et (m(L1 P(x,)mod p) kj“( Y
p

U L, pixymodpy.o = Zexp k | on the second particle of‘ Bu,v> , agent A

k=0
constructs some decoy particles in the Z -basis and X -basis.

9. After inserting the second particle of ‘Bu,v> into the decoy particles (constructed by him), agent A1 sends
these particles to the agent A2 .

The above step numbers 2 to 8 are repeated to verify the security of the quantum channel between agent Al and
agent A, through the decoy particles. Similarly agent A, performs an unitary operationU(Lz P(x,)mod p),0 ON
the second particle of ‘ BU’V> and constructs some decoy particles in the Z -basis and X -basis.

The above process is uninterrupted until the last agent At .

10. After ensuring that the above process has been completed, dealer performs an unitary operation
U(p—u),(p—v)@H(S) on the first particle of‘ Bu'v> where H(S) € Fis a hash function which is publicly

announced by the dealer.

11. Dealer sends the first particle of‘ Bu,v> to the agent A, .
12. After receiving the first particle of‘ BU’V>, the agent A, performs a Bell state measurement on the state

‘ Buyyv.>where ‘ Bu',v'> is a new state of‘ Bu,v> and is obtained by operating the unitary operations of the -
agents together with the dealer.

13. After performing Bell state measurement on the state‘ Bu.’v.> , the agent A, obtains a secretS =u' and
verification information H(S) = v'.

14. Agent A, computes H(u'). If H(u') = V'then the agent A, can confide that the reconstructed secret S

is correct and the proposed quantum (t,n)-threshold secret sharing scheme is stopped otherwise the

proposed quantum (t,n) -threshold secret sharing scheme is aborted and restarted.
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IV. SECURITY ANALYSIS

We know that a quantum secret sharing scheme is secure against any outside attacker if it is secure against a
dishonest participant. Also we know that a dishonest participant can intercept other participant’s particles and
resends forged particles or entangle aider particles on the intercepted particles and pilfer the secret information
through measuring the aider particles. As discussed above, it is evident from the intercept and resend attack, and
entangle and measure attack that neither outside eavesdropper nor dishonest participant can filch the secret
information from the transmitted particles because the transmitted particles in our proposed quantum secret
sharing scheme are conserved by the decoy particles which are randomly yield in the computational Z -basis or
X -basis. This shows that our proposed quantum secret sharing scheme is more secure against dishonest
participants i.e. it is more secure against any outside eavesdropper.

V. CONCLUSION

Verifiable secret sharing schemes are ideal for storing information that is highly sensitive and highly important.
These schemes are important in cloud computing environments. Thus a key can be distributed over many
servers by threshold secret sharing mechanism. The key is then reconstructed when needed. Secret sharing has
also been suggested for sensor networks where the links are liable to be tapped by sending the data in shares
which makes the task of the eavesdropper harder. The security in such environments can be made greater by
continuous changing of the way the shares are constructed.
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