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ABSTRACT 

Secret sharing schemes have been suggested for sensor networks where the links are liable to be tapped by 

sending the data in shares which makes the task of the eavesdropper harder. The security in such environments 

can be made greater by continuous changing of the way the shares are constructed. In the present paper we 

proposed a verifiable quantum ),( nt -threshold secret sharing scheme using Lagrange interpolation and two 

qudit Bell state in p -dimensional Hilbert space. The proposed scheme is enough secure against the fraud in 

secret share distribution phase as well as secret reconstruction phase. 

Keywords- Quantum cryptography, Conventional quantum secret sharing, Verifiable quantum 

secret sharing, Bell state, Pauli operators, Finite fields. 

 

I. INTRODUCTION 

With the improvement of computing ability and algorithms, especially the presentation of quantum algorithms 

[9, 11], the security of classical cryptography encounters serious challenges. Under this background, more and 

more attention is paid to the theory of quantum information. However, the design and cryptanalysis of quantum 

cryptography is far from satisfactory, especially in quantum secret sharing. Obviously, quantum secret sharing 

may play an important role in protecting secret information so that the works about quantum secret sharing have 

attracted a lot of attention in theoretical and experimental ways. The concept of secret sharing was first 

introduced by independently by Shamir [10] and Blakley[2]. In a conventional ),( nt - threshold secret sharing 

scheme a trusted dealer divides a secret S into n -shares and distributes them among n -agents such that any 

coalition of t  or more agents can together reconstruct the original secret S  but no coalition of fewer than t -

agents can. Verifiable secret sharing schemes are important in cloud computing environments. Thus a key can 

be distributed over many servers by threshold secret sharing mechanism. The key is then reconstructed when 

needed. The concept of quantum secret sharing was first introduced by Hillery et al. [5], who showed how to 

implement a conventional threshold scheme using Greenberger-Horne-Zeilinger (GHZ) states in the presence of 

the outside and inside eavesdroppers. They also showed how to share an unknown qubit between two agents 

such that only the collaboration of two agents could reconstruct the original qubit. Subsequently a lot of 

quantum secret sharing schemes have been proposed [6, 7, 8, 12, 13] but they all have lack of verification 

characteristic which is assumed very crucial property of any cryptographic scheme in realistic applications. The 

first verifiable quantum secret sharing scheme was proposed by Yang et al. [15]. The verifiable quantum secret 

sharing scheme proposed by Yang et al. [15] was based upon Li’s scheme [15] and it has a drawback that it 



 

319 | P a g e  
 

requires too much quantum authentication information for its implementation. Later on, Yang et al. [14] 

proposed another modification of verifiable quantum secret sharing scheme in which a quantum tag is connected 

to the quantum secret through a unitary operation, so that the quantum tag can be used as a signature to verify 

the reconstructed quantum secret. A drawback of Yang et al. [14] scheme is that classical secret cannot be 

shared in it. In the present paper we proposed a verifiable quantum ),( nt -threshold secret sharing scheme using 

Lagrange interpolation and two qudit Bell state in p -dimensional Hilbert space.  

 

II. PRELIMINARIES 

In this section we will discuss some auxiliary results and definitions which will be helpful in interpreting the 

proposed scheme. 

Definition 2.1: The generalized two qudit Bell state in p -dimensional Hilbert space is defined as  
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where  pvkvk mod)(    and  }1,...,2,1,0{,  pvu . 

Definition 2.2: The generalized Pauli unitary operator in p -dimensional Hilbert space is defined as  
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where  pkk mod)(     and  }1,...,2,1,0{,  p . 

Lemma 2.3 [9]: In a p -dimensional Hilbert space, we have 

(a). kmkm 

 
(b).       mnknkmnkm   

where  km  is a Dirac function   and  }1,...,2,1,0{,,  pnkm .  

Theorem 2.4: If an unitary operator 
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two qudit Bell state vkkk
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, then Bell state vuB , changes to a new 

state, say   vuB ,  i.e.   vuvu BBU ,,, ,  where pkk mod)(     and  

}1,...,2,1,0{,,,  pvu . 

Proof. We have 
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Operating  ,U on vuB ,  using relations (2.1), (2.2) and lemma 2.3, we obtain 
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                    =   vuB , . 

Thus we get  

  vuvu BBU ,,, . 

This completes the proof of the theorem. 

 

III. CONSTRUCTION OF THE PROPOSED SECRET SHARING SCHEME 

Suppose a dealer D  wants to share his secret S  among n -agents, say
1A ,

2A , …, nA . According to the theory 

of conventional secret sharing scheme it is assumed that any coalition of t  or more agents can together 

reconstruct the original secret S  but no coalition of fever than t  agents can. The construction of the proposed 

verifiable ),( nt -threshold quantum secret sharing scheme consists of the following phases: 

Phase-I: Secret Share Distribution Phase. 

To distribute the secret S , dealer goes through the following steps: 

1. For given t  and n  , dealer uses the Bertnard’s principle [1] to find an appropriate prime number p  such 

that npn 2 . 
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2. Using p  (chosen as above), dealer construct a finite field pZF  . 

3. Choosing the numbers 
1a ,

2a , …, 1ta in the field F , the dealer construct a polynomial as under 
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where S  is the secret to be shared among the agents. 

4. Dealer again picks the numbers 
1x ,
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is an integer, where km xx   for all km   . 

5. Dealer publicly announces all
1x ,

2x , …, nx .  

In fact
1x ,

2x , …, nx  are used as the ID of the agents 
1A ,

2A , …, nA  respectively.  

6. Dealer calculates )( 1xP , )( 2xP , …, )( nxP . 

7. Using the quantum secure direct communication techniques [3, 4], dealer sends )( 1xP , )( 2xP , …, )( nxP  

to the agents 
1A ,

2A , …, nA  respectively.  

In fact )( 1xP , )( 2xP , …, )( nxP are the private shares of the agents 
1A ,

2A , …, nA  respectively. 

Phase II: Reconstruction of the original secret S . 

According to the ),( nt -threshold secret sharing hypothesis, any coalition of t  or more agents can together 

reconstruct the original secret S  and no coalition of fever than t  agents can. If t -agents
1A ,

2A , …, tA  

want to reconstruct the secret S , then this phase consists of the following steps: 

1. Dealer randomly yields a two qudit Bell state in a p -dimensional Hilbert space, as under 
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where pvkvk mod)(    and }1,...,2,1,0{,  pvu  . 

2. Dealer randomly constructs some decoy particles in the Z -basis and X -basis, 

 where Z -basis = 1,...,2,1,0,  pmm , X -basis = 1,...,2,1,0,  pmMm  
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3. Dealer inserts the second particle of vuB ,  into the decoy particles. 

4. Keeping in mind the record of insertion position of the second particle of vuB ,   and initial states of the 

decoy particles, dealer sends these particles to the agent 1A .  
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5. After ensuring that agent 1A  has received these particles, dealer publishes the position and basis of the 

decoy particles and tells agent 1A  to measure these particles in an appropriate Z -basis or X -basis 

according to his basis. 

6. After measuring the decoy particles, agent 1A  publicly announces his measurement results. 

7. Dealer matches the measurement results of agent 1A with his record and if these results do not match with 

the initial states, he tells the agent 1A  to abort the process and start a new process; otherwise they carry on 

the scheme. 

8. After performing an unitary operation 
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on the second particle of vuB ,  , agent 1A  

constructs some decoy particles in the Z -basis and X -basis. 

9. After inserting the second particle of vuB ,  into the decoy particles (constructed by him), agent 1A  sends 

these particles to the agent 2A . 

The above step numbers 2 to 8 are repeated to verify the security of the quantum channel between agent 1A  and 

agent 2A  through the decoy particles. Similarly agent 2A  performs an unitary operation 0,)mod)(( 22 pxPLU on 

the second particle of vuB ,  and constructs some decoy particles in the Z -basis and X -basis. 

The above process is uninterrupted until the last agent tA . 

10. After ensuring that the above process has been completed, dealer performs an unitary operation 

)()(,)( SHvpupU  on the first particle of vuB ,  where FSH )( is a hash function which is publicly 

announced by the dealer. 

11. Dealer sends the first particle of vuB ,  to the agent tA . 

12. After receiving the first particle of vuB , , the agent tA performs a Bell state measurement on the state 

',' vuB where ',' vuB  is a new state of vuB ,  and is obtained by operating the unitary operations of the t -

agents together with the dealer. 

13. After performing Bell state measurement on the state ',' vuB  , the agent tA  obtains a secret 'uS   and 

verification information ')( vSH  . 

14. Agent tA  computes )'(uH . If ')'( vuH  then the agent tA  can confide that the reconstructed secret S  

is correct and the proposed quantum ),( nt -threshold secret sharing scheme is stopped otherwise the 

proposed quantum ),( nt -threshold secret sharing scheme is aborted and restarted.  
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IV. SECURITY ANALYSIS 

We know that a quantum secret sharing scheme is secure against any outside attacker if it is secure against a 

dishonest participant. Also we know that a dishonest participant can intercept other participant’s particles and 

resends forged particles or entangle aider particles on the intercepted particles and pilfer the secret information 

through measuring the aider particles. As discussed above, it is evident from the intercept and resend attack, and 

entangle and measure attack that neither outside eavesdropper nor dishonest participant can filch the secret 

information from the transmitted particles because the transmitted particles in our proposed quantum secret 

sharing scheme are conserved by the decoy particles which are randomly yield in the computational Z -basis or 

X -basis. This shows that our proposed quantum secret sharing scheme is more secure against dishonest 

participants i.e. it is more secure against any outside eavesdropper. 

 

V. CONCLUSION 

Verifiable secret sharing schemes are ideal for storing information that is highly sensitive and highly important. 

These schemes are important in cloud computing environments. Thus a key can be distributed over many 

servers by threshold secret sharing mechanism. The key is then reconstructed when needed. Secret sharing has 

also been suggested for sensor networks where the links are liable to be tapped by sending the data in shares 

which makes the task of the eavesdropper harder. The security in such environments can be made greater by 

continuous changing of the way the shares are constructed. 

 

REFERENCES 

[1] Aigner M. and  Ziegler G. M., Proofs from the Book, Springer , Berlin, 7-10, 2006. 

[2]   Blakley G. R., Safeguarding cryptographic keys, In Proc. of AFIPS National Computer Conference, New 

York, 48:313-317, 1979. 

 [3] Cai Q. Y. and Li W. B., Deterministic secure communication without using entanglement, 

Chin.  Phys. Lett. 21  (2004) 601-603. 

[4]  Deng F. G. and Long G. L., Secure direct communication with a quantum one-time  pad, 

Phys. Rev.  A 69  (2004) 052319. 

[5] Hillery M., Buzek V. and Berthiaume A., Quantum secret sharing, Phys. Rev.  A 59  (1999) 

1829-1834. 

[6] Hsu J. L., Chong S. K., Hwang T. and Tsai C. W.,  Dynamic quantum  secret sharing, 

Quantum Inf.  Process. 12  (2013), 331-344. 

[7] Li Q., Long D. Y., Chan W. H. and  Qiu D. W., Sharing a quantum secret without a  trusted 

party,  Quantum Inf.  Process. 10  (2011) 97-106. 

[8] Liu L. L., Tsai C. W. and Hwang T., Quantum secret sharing using symmetric state, Int.  J. 

Theor. Phys. 51  (2012) 2291-2306. 

[9] Nielsen M. and Chuang I., Quantum Computation and Quantum Information, pp. 28-43. Cambridge 

University Press, Cambridge (2000). 

[10]  Shamir A., How to share a secret ?, Communications of the ACM, 22(11): 612-613, 1979. 

http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3136s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3137s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3137s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3138s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3138s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3138s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3139s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3139s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib33s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib34s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib34s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3131s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3132s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3133s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3134s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3134s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib34s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib35s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib35s1


 

324 | P a g e  
 

[11] Shor P. W.,  Algorithms for quantum computation: discrete logarithms and factoring, In: Proceedings of 

the 35th Annual Symposium of Foundation of Computer Science (1994). 

[12] Sun Y., Xu S. W., Chen X. B., Niu X. X. and Yang Y. X., Expansible  quantum secret sharing  

network,  Quantum Inf.  Process. 12  (2013) 2877-2888. 

[13] Tseng H.Y., Tsai C. W., Hwang T. and Li C. M.,  Quantum  secret  sharing based on   

quantum  search algorithm, Int.   J. Theor.  Phys. 51   (2012), 3101-3108. 

[14] Yang Y. G., Jia X., Wang H. Y. and Zhang H.,   Verifiable   quantum (k, n)-threshold  

secret  sharing,  Quantum  Inf.   Process.  11   (2012), 1619-1625.  

[15] Yang Y. G., Teng Y. W., Chai H. P. and Wen Q. Y.,   Verifiable  quantum (k, n)-threshold  

secret  key   sharing,  Int.   J.  Theor.  Phys.  50   (2011), 792-798. 

 

http://refhub.elsevier.com/S0020-0190(16)00007-7/bib38s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib39s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib39s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3130s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3130s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3130s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3131s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3135s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3135s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3135s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3136s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3134s1
http://refhub.elsevier.com/S0020-0190(16)00007-7/bib3134s1

