Vol. No.6, Issue No. 07, July 2017

www.ijarse.com

STUDY AND IMPLEMENTATION OF PHASE LOCKED LOOP

Dr. Sunita Pandit Ugale¹, Rasika Madhukar Chandramore²

^{1,2} Department of Electronics & Telecommunications, K.K.W.I.E.E.R, Nashik, (India)

ABSTRACT

This paper introduces a design aspects of low power phase locked loop using VLSI technology. The phase locked loop is designed using latest 45nm process technology parameters, which in turn offers high speed performance at low power. The main quality related to the 45nm technology such as the high-k gate oxide ,metal-gate and very low-k interconnect dielectric described.

Keywords—Phase locked loop (PLL), voltage control oscillator (VCO), 45nm technology, Very large scale integration (VLSI) technology, low power.

I. INTRODUCTION

A phase locked loop system is negative f/b system where an signal which generate oscillator is phase and frequency locked to a reference signal. A reference signal is usually retrieved from a crystal oscillator. A crystal oscillator reference is kept in MHz range and is consider to be the most stable form of oscillator available. High frequency crystals are really expensive and hence not used in the system to reduce overall costs.

More precisely ,a PLL circuit synchronizes an output signal (phase and frequency) with respect to references. When the PLL gets locked the phase error between output and input signal is zero or should remain at a constant phase error. If the frequency of reference and output gets locked but not the phase, then the PLL system disrupts the output again and keeps running unless both phase and frequency gets locked. Therefore a control mechanism develops unless the phase is fully locked, and thus the name phase locked loop. Basically there are three fundamental blocks in PLL, namely:

- 1. Phase detector
- 2. Loop filter
- 3. VCO

II. IMPLEMENTATION OF PLL CIRCUITS

A. Phase Frequency Detector

Phase Detector are merged, such that it can detect both phase and As the name suggest that the phase detector and the frequency frequency differences. It is only possible for the periodic signals [11]. It consists of two edge-triggered resettable D-flip-flops with their D inputs connected to logic 1. The reference frequency signal (A) and the signal derived from its divider output (B) form the two inputs of the flip-flops and QA (UP) and QB (DOWN) are the outputs [7]. This circuit shown in figure 2 compares the phase and frequency of these two input signals and generates an error signal which is proportional to the phase deviation between them.

Vol. No.6, Issue No. 07, July 2017

www.ijarse.com

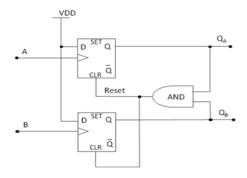


Fig 1:Block Diagram of PFD

B. Low Pass Filter

It is imperative to note that the output translated from the phase detector output consists of a undesirable high-frequency components and a desirable dc component. Thus, the low pass filter is one of the key design components which serve to effectively filter out the undesired AC component and provides a steady control voltage or the dc

level to operate the VCO [8].

C. Voltage Controlled Oscillator

A voltage controlled oscillator or VCO is the main block Of PLL system. All the blocks apart from VCO make its frequency and phase stable. More precisely they are designed to control the VCO phase and frequency with respect to reference. The maximum operating frequency of the VCO also decides the maximum output frequency of the PLL system.

III. NOISE IN PLL

The total noise of the PLL is nothing but the summation of the individual noise contribution of different PLL building blocks. The VCO and frequency divider are the blocks which contribute most of the noise in a PLL , because they are the blocks which are dealing with the high frequency signal . The other blocks such as PFD , loop filter can be designed in such a way that they will not contribute noise significantly to the PLL.

Phase noise is the measure of variations in the frequency domain. Figure 6 shows a plot of a VCO signal exhibiting phase noise. If the phase noise was not present, the entire power of the oscillator would be focused at the center frequency W0. However, the phase noise spreads some of the oscillator power to adjacent frequencies, which results in the sidebands.

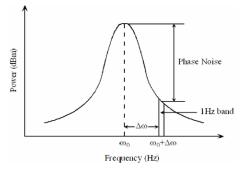


Fig 2: Phase noise vs offset frequency characteristics

Vol. No.6, Issue No. 07, July 2017

www.ijarse.com

IV. SIMULATION RESULTS

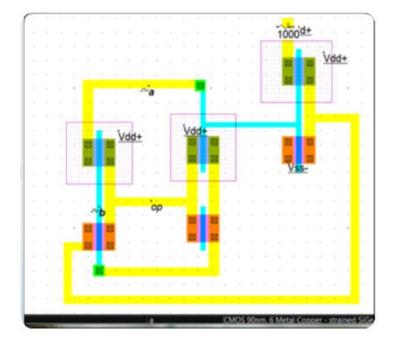


Fig 3: Layout of XOR Phase Detector

The clock skew is minimized by using single edge clocks. The operating range of the design is increased with the help of synchronous CMOS logic and also the power consumption is reduced compared to the traditional PFD. The output of the PFD when reference signal rising edge leads input signal rising edge and vice versa is shown in fig 4. The XOR phase detector simply verify truth table of the XOR gate or we can say it detect when there is any change in

its input phase.

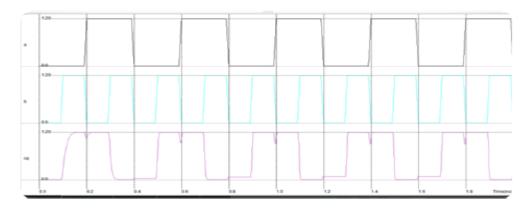


Fig 4: o/p waveform of XOR PFD

The transient response of the PLL is as shown in figure 5. Here it can be observed that the filter output comes to stable after a period of 220 ns which is called as settling time or lock in time.

Fig.6 shows how the reference and the feedback input signal Locks after 220 ns. After the mentioned lock in time, the control voltage maintains a constant voltage level whereas the frequency of the

Vol. No.6, Issue No. 07, July 2017

www.ijarse.com

reference and the feedback input signal also remains constant. But there is an offset phase difference throughout the time period .

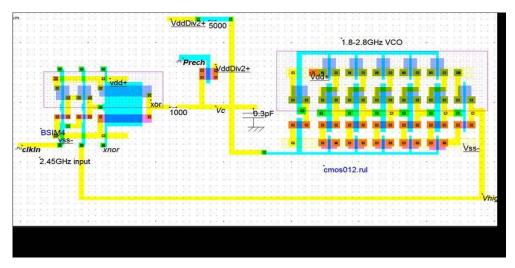


Fig 5: Layout of PLL in MICROWIND 3.1

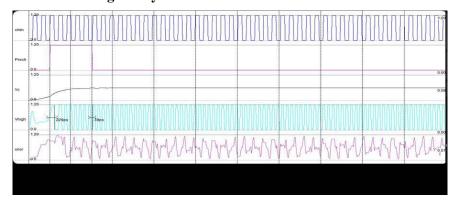


Fig 6: Output of Phase Locked Loop

V. COMPARISON CHART OF VARIOUS TECHNOLOGIES

Technology	90nm	45nm	30nm
Area	55.5um2	35.6um2	22.8um2
Power	0.268mW	2.074uW	1.679uW
Delay	102.3Ps	153Ps	102.3Ps
Frequency	2.55GHz	2.55GHz	2.55GHz
Width	17.7um	8.8um	7.1um
Height	8.1um	4.0um	3.2um

VI. CONCLUSION

A phase locked loop with low phase noise is designed here. The lock time and lock range are also measured. The lock time of PLL is 220ns and lock range is found as 250 - 950 GHz. The designed PLL get phase noise -

Vol. No.6, Issue No. 07, July 2017

www.ijarse.com

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

- 91.74dBc/Hz at 1MHz offset frequency. We also compare the study at various technology. The center frequency of oscillation of VCO.
- [1] T.R Lee and A Hajimiri, "Oscillator Phase Noise: a Tutorial," IEEE Journalo/Solid-State Circuits. vol. 35, March 2012, pp. 326 336.
- [2] M.Mansuri, D.Liu, and C.K.Yang, "Fast Frequency Acquisition Phase Frequency Detector for GSamples's Phase Locked Loops," IEEE Journal o/Solid State Circuit, Vol. 37, No. 10, Oct., 2013.
- [3] S. M. Shahruz, "Novel phase-locked loops with enhanced locking capabilities," Journal 0/ Sound and Vibration, Vol. 241, Issue 3, 29 March 2013.
- [4] William Shing Tak Yan, Howard Cam Luong, A 900-MHz CMOS Low Phase Noise Voltage Controlled Ring Oscillator, IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 48, No. 2, February 2011.
- [5] Ullas Singh, Michael Green, Dynamics of High-Frequency CMOS Divide IEEE, 0-7803-7448-7/02, V 421-424, 2012.
- [6] Zhongtao Fu, Xiao Wang, Eugene Minh, Alyssa Apsel, A Fast Acquisition Phase Frequency Detector for Phase Locked Loop, Proceedings of the Argentine school of Micro Nanoelectronics, Technology and Application, pg 77-80,2013.
- [7] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Higher Education, 2013.
- [8] Best, Roland E. Phase-Locked Loops Design, Simulation and Application MacGraw-Hill, 2010.
- [9] Phase Locked Loops Design, Simulation and Applications, "McGraw-Hill Publication, 5th Edition, 2014.
- [10] Bianchi, Giovanni. Phase-Locked Loop Synthesizer Simulation. McGrawHill, 2012.
- [11] Chou, Chien-Ping, Lin, Zhi-Ming, and Chen, Jun-Da. A 3-PS Dead-Zone Double- Edge-checking Phase-Frequency-Detector With 4.78 GHz Operation Frequency: The 2004 IEEE Asia-Paci_c Conference on Circuits and Systems conference. (2012): Volume 2, Page(s): 937 940.
- [12] Barrett, Curtis. Fractional/Integer-N PLL Basics. Texas Instruments, Wireless Communication Business Unit, August 2009.