Vol. No.6, Issue No. 07, July 2017

www.ijarse.com



# REPLACEMENT OF COARSE AGGREGATES WITH E-WASTE

## Prof. Harish J Kulakarni<sup>1</sup>, Arun Kumar C C<sup>2</sup>, Harsharaj S<sup>3</sup>

Assistant Professor<sup>1</sup>, U G Students<sup>23</sup>

Department of Civil Engineering, Shri Pillappa College of Engineering Bangalore
Visvesvaraya Technological University, Belgaum (India)

#### **ABSTRACT**

Due to the increase in the demand of raw of raw materials in the construction industry, there has been a serious depletion in the naturally available raw material in the construction industry. In this regards, the non-biodegradable environmentally hazardous electronic and electrical waste arising from various industrial and domestic appliances was considered as an alternative raw material for the present research. The current study not only offers a solution to the ongoing crisis in effective safe disposal of E-wastes, but also resolves the issue of dearth of raw materials. The present study targeted effective utilisation of E-waste Ceramic as a potential aggregate in BC Mix. The research subsequently investigated the probable changes in physical and strength properties of the mixes casted using Marshall Method of Mix design, And conclusions were later drawn depending on the comparative result analysis for the best percentage replacement of aggregate by E-waste ceramic as proposed for a roadway of width 3.75m for soil CBR of 4%. The study herewith hence postulated the best possible percentage replacement by weight of total mix asnd also conducted an approximate construction cost comparison.

#### I. INTRODUCTION

The development of technology is at amazing rate today the development in the field of electronics is huge and notable in spite of its notability there is a huge dangerous and controversial thing behind their usage due to the use of large electronic components in day-to-day life, its waste also increases. so, we the engineers and technologists are in need of new arena to find best system for e-waste management.

One such system is "an effective management of e-waste as a part of construction materials" which is surely going to be the biggest revolution in the management of e-waste. Our proposed system deals with the management of e-waste as a part of construction materials.

The overall idea is mixing the e-waste in the construction practice as Replacement for coarse aggregate and thereby reducing the waste in a greater way now we have started implementing this idea the work progress is at the initial stage. Once it becomes successful it is going to be greatest boon in the management of e-waste.

The production of electric and electronic equipment is one of the fastest growing manufacturing activities. The development has result in an increase of waste electric and electronic equipments, rapid economic growth, coupled with urbanization growing demand of consumer goods, has increased both the consumption of Electronic Wastes which can be the sources of the hazardous wastes that pose a risk to the environment and to sustainable economic growth.

Vol. No.6, Issue No. 07, July 2017

www.ijarse.com



#### II. OBJECTIVE

- To study the physical properties of coarse aggregates.
- To study the physical properties of Bitumen and E-waste.
- To design the mix by partial Replacement of E-waste as a coarse aggregate.
- To Evaluate the strength criteria for the design mix by Marshall stability test.
- To Arrive at the optimum percentage replacement of E-waste in the design mix.

#### III. TESTS ON AGGREGATES

The coarse aggregate used was a normal weight aggregate with a maximum size of 9.5 mm. Stone dust was used as the fine aggregate. Salient properties of the aggregates as determined by standard tests are given in Table 1

**Table 1: Test Results of Coarse Aggregates** 

| Sl. no | Description of tests                                            | Test result  | Requirements as per Table 500-14 of MoRT&H Vth Revision Specifications | IS codes                 |
|--------|-----------------------------------------------------------------|--------------|------------------------------------------------------------------------|--------------------------|
| 1      | Aggregate crushing value (%)                                    | 23.99        |                                                                        | IS 2386<br>PartIV1963    |
| 2      | Aggregate impact value (%)                                      | 23.20        | Max 27%                                                                | IS 2386<br>PartIV1963    |
| 3      | Los Angeles Abrasion Value (%)                                  | 28.00        | Max35%                                                                 | IS 2386<br>PartIV1963    |
| 4      | Flakiness and Elongation Index (Combined) (%)                   | 14.35        | Max 30%                                                                | IS 2386<br>Part I 1963   |
| 6      | Aggregate specific Gravity 1.Coarse aggregate 2.Fine aggregates | 2.61 2.78    | 2.5-3                                                                  | IS 2386<br>Part III 1963 |
| 7      | Filler specific Gravity Cement<br>Dust                          | 3.08<br>2.85 |                                                                        |                          |

#### IV. TESTS ON BITUMEN

VG30 grade of bitumen is used as the binder and its properties as determined by standard test procedures are tabulated in Table 2

TABLE 2: Test Results of Neat Bitumen (VG 30 GRADE) Bitumen

| Sl<br>No. | Test conducted                                              | Test results | Requirements as per IS: 73-2002 | IS codes        |
|-----------|-------------------------------------------------------------|--------------|---------------------------------|-----------------|
| 1         | Penetration at 25 <sup>o</sup> C (1/10 <sup>th</sup> of mm) | 66.33        | 60-70                           | IS: 1203 –1978  |
| 2         | Softening point, <sup>0</sup> C                             | 57.25        | 45-55                           | IS: 1205 – 1978 |
| 3         | Ductility,cm                                                | 75+          | 75 min                          | IS: 1208 – 1978 |
| 4         | Specific Gravity                                            | 1.00         | 0.99                            | IS :1200 1970   |
| 5         | Flash point, <sup>0</sup> C                                 | 235          | 175 min                         | IS:1209- 1978   |

Vol. No.6, Issue No. 07, July 2017

www.ijarse.com

#### V. TESTS ON E-WASTES



For the investigations on E-wastes bituminous mixes, we used E-wastes as it is easily available and it does not vary much in properties when compared to other wastes like ceramic etc. These wastes was obtained in enormous amount and then cut to the required size.

Table 3: Properties of E-Wastes as Obtained From Literatures

| Tests            | Value |
|------------------|-------|
| Crushing test    | 30.0% |
| Impact test      | 28.5% |
| Specific Gravity | 0.99  |

#### VI. PROPORTIONING FOR BC GRADE II

On proportioning the aggregates for Bituminous Concrete mix as per MoRTH specifications, the following mix proportion was obtained.

The gradation of the above mix proportion is given in Table 4

Table 4: Gradation Of Proportioned Bituminous Mix

| IS Sieve (mm) | Average value of % passing                            |    |     | Cumulative<br>weight (gms) |  |  |
|---------------|-------------------------------------------------------|----|-----|----------------------------|--|--|
| 26.5          | 100                                                   | 0  | 0   | 0                          |  |  |
| 19            | 95                                                    | 5  | 60  | 60                         |  |  |
| 9.5           | 68                                                    | 27 | 324 | 384                        |  |  |
| 4.75          | 50                                                    | 18 | 216 | 600                        |  |  |
| 2.36          | 36                                                    | 14 | 168 | 768                        |  |  |
| 0.300         | 12                                                    | 24 | 288 | 1056                       |  |  |
| 0.075         | 5                                                     | 7  | 84  | 1140                       |  |  |
|               | Cement 24                                             |    |     |                            |  |  |
|               | Stone dust 36                                         |    |     |                            |  |  |
| Tota          | Total weight of aggregates in Marshall specimen (gms) |    |     |                            |  |  |

Vol. No.6, Issue No. 07, July 2017

www.ijarse.com



**TABLE 5: Gradation of 10% E-Waste Replace Mix** 

| Sieve size in mm    | Total weight of |           | E-waste  |
|---------------------|-----------------|-----------|----------|
| Sieve size in iniii | aggregates      | Aggregate | Replaced |
| 26.5-19             | 60              | 60        | -        |
| 19-9.5              | 324             | 324       | -        |
| 9.5-4.75            | 216             | 194.4     | 21.6     |
| 4.75-2.36           | 168             | 151.2     | 16.8     |
| 2.36-0.3            | 288             | 259.2     | 28.8     |
| 0.3-0.075           | 84              | 84        | -        |
| Cement              | 24              | 24        | -        |
| Dust                | 36              | 36        | -        |

Table 6: Gradation of 20% E-Waste Replace Mix

| Sieve size in mm | Total weight of aggregates | Aggregate | E-waste<br>Replaced |
|------------------|----------------------------|-----------|---------------------|
| 26.5-19          | 60                         | 60        | -                   |
| 19-9.5           | 324                        | 324       | -                   |
| 9.5-4.75         | 216                        | 172.8     | 43.2                |
| 4.75-2.36        | 168                        | 134.4     | 33.6                |
| 2.36-0.3         | 288                        | 230.4     | 57.6                |
| 0.3-0.075        | 84                         | 84        | -                   |
| Cement           | 24                         | 24        | -                   |
| Dust             | 36                         | 36        | _                   |

**Table 7: Gradation of 30% E-Waste Replace Mix** 

| Sieve size in mm | Total weight of aggregates | Aggregate | E-waste<br>Replaced |
|------------------|----------------------------|-----------|---------------------|
| 26.5-19          | 60                         | 60        | -                   |
| 19-9.5           | 324                        | 324       | -                   |
| 9.5-4.75         | 216                        | 151.2     | 64.8                |
| 4.75-2.36        | 168                        | 117.6     | 50.4                |
| 2.36-0.3         | 288                        | 201.6     | 86.4                |
| 0.3-0.075        | 84                         | 84        | -                   |
| Cement           | 24                         | 24        | -                   |
| Dust             | 36                         | 36        | -                   |

Vol. No.6, Issue No. 07, July 2017

#### www.ijarse.com

#### VII. DESIGN OF BITUMINOUS CONCRETE MIXES

IJARSE ISSN (0) 2319 - 8354 ISSN (P) 2319 - 8346

The main objective of the mix design is to produce a bituminous mix by proportioning various components so as to have:

- Sufficient bitumen to ensure a durable pavement.
- Sufficient strength to resist shear deformation under traffic at higher temperature.
- Sufficient air voids in the compacted bitumen to allow for additional compaction by traffic.
- Sufficient workability to permit easy placement without segregation.
- Sufficient flexibility to avoid premature cracking due to repeated bending by traffic.
- Not very high stiffness at low temperature to prevent shrinkage cracks.

The bituminous mix was designed by using Marshall Method of mix design. The Marshall test was used to obtain the optimum bitumen content based on ASTM D-1559-96 the procedure of testing is given below.

**Table 8: Marshall Test Results for Mix With Neat Bitumen** 

|        | Bitumen | Marshall<br>Stability | Flow | Bulk<br>density | Total air<br>voids | Voids<br>filled | Vaida in minanal            |
|--------|---------|-----------------------|------|-----------------|--------------------|-----------------|-----------------------------|
| Sl. No | Content | in                    | In   | Gb in<br>grm/cc | Vv                 | By<br>bitumen   | Voids in mineral aggregates |
|        | (%)     | Kgs                   | Mm   |                 | (%)                |                 |                             |
| 1      | 4.5     | 1384                  | 2.75 | 2.378           | 5.62               | 63.01           | 15.90                       |
| 2      | 5.0     | 1499                  | 2.82 | 2.389           | 4.70               | 69.63           | 15.98                       |
| 3      | 5.5     | 1553                  | 3.16 | 2.398           | 4.20               | 74.82           | 16.14                       |
| 4      | 6.0     | 1448                  | 3.52 | 2.394           | 2.70               | 76.49           | 16.78                       |

Table 9: Marshall Stability Test With 10% of E-Waste

|        | Bitumen | Marshall<br>Stability | Flow | Bulk<br>density | Total air<br>voids | Voids<br>filled |                             |
|--------|---------|-----------------------|------|-----------------|--------------------|-----------------|-----------------------------|
| Sl. No | Content | In                    | In   | Gb in<br>grm/cc | Vv                 | By<br>bitumen   | Voids in mineral aggregates |
|        | (%)     | Kgs                   | mm   |                 | (%)                |                 |                             |
| 1      | 4.5     | 643                   | 2.90 | 2.372           | 5.83               | 63.84           | 16.09                       |
| 2      | 5.0     | 700                   | 2.97 | 2.384           | 4.71               | 70.92           | 16.17                       |
| 3      | 5.5     | 796                   | 3.31 | 2.392           | 3.68               | 77.52           | 16.33                       |
| 4      | 6.0     | 743                   | 3.67 | 2.388           | 3.19               | 81.22           | 16.97                       |

Table 10: Marshall Stability Test With 20% of E-Waste

|        | Bitumen | Marshall<br>Stability | Flow | Bulk<br>density | Total air<br>voids | Voids<br>filled | <b>1</b> 7.11.              |
|--------|---------|-----------------------|------|-----------------|--------------------|-----------------|-----------------------------|
| Sl. No | Content | In                    | In   | Gb in grm/cc    | Vv                 | By<br>bitumen   | Voids in mineral aggregates |
|        | (%)     | Kgs                   | mm   |                 | (%)                |                 |                             |
| 1      | 4.5     | 731                   | 2.80 | 2.370           | 5.93               | 63.41           | 16.18                       |
| 2      | 5.0     | 789                   | 3.10 | 2.369           | 5.27               | 68.37           | 16.66                       |
| 3      | 5.5     | 884                   | 3.55 | 2.390           | 3.79               | 76.97           | 16.42                       |
| 4      | 6.0     | 834                   | 3.65 | 2.381           | 3.47               | 79.89           | 17.21                       |

Vol. No.6, Issue No. 07, July 2017

www.ijarse.com



Table 11: Marshall Stability Test With 30% of E-Waste

|        | Bitumen | Marshall<br>Stability | Flow | Bulk<br>density | Total air<br>voids | Voids<br>filled | Voids in              |
|--------|---------|-----------------------|------|-----------------|--------------------|-----------------|-----------------------|
| Sl. No | Content | In                    | In   | Gb in<br>grm/cc | Vv                 | By<br>bitumen   | mineral<br>aggregates |
|        | (%)     | Kgs                   | mm   |                 | (%)                |                 |                       |
| 1      | 4.5     | 702                   | 3.04 | 2.364           | 6.14               | 62.55           | 16.37                 |
| 2      | 5.0     | 759                   | 3.34 | 2.364           | 5.48               | 67.49           | 16.84                 |
| 3      | 5.5     | 855                   | 3.79 | 2.373           | 3.56               | 73.79           | 17.01                 |
| 4      | 6.0     | 804                   | 4.08 | 2.367           | 3.26               | 77.16           | 17.70                 |

Table 12: Optimum Binder Content for Neat Bitumen Mix and E-Waste Replaced Mix ( Obtained By Graphs)

| OPTIMUM BITUMEN CONTENT, %      |
|---------------------------------|
| (5.55+5.61+5.50)/3= <b>5.55</b> |
| (5.50+5.30+5.50)/3= <b>5.43</b> |
| (5.50+5.42+5.50)/3= <b>5.47</b> |
| (5.51+5.38+5.50)/3= <b>5.46</b> |
|                                 |

TABLE 13: table 500-24. Requirements of bituminous concrete mix

| sl. |                                                                                                                             |                                | 0%              | 10%             | 20%             | 30%             |
|-----|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|-----------------|-----------------|-----------------|
| no  | Description                                                                                                                 | Requirment s                   | Replaceme<br>nt | Replaceme<br>nt | Replaceme<br>nt | Replaceme<br>nt |
| 1   | Marshall stability (ASTM Designation: D-1559) determined on Marshall specimens compacted by 75 compaction blows on each end | 820 kg<br>(1800 lb)<br>minimum | 1560            | 785             | 845             | 810             |
| 2   | Marshall flow (mm)                                                                                                          | 2-4                            | 3.25            | 3.20            | 3.70            | 3.45            |
| 3   | Per cent air voids in mix                                                                                                   | 3-5                            | 4.30            | 3.60            | 3.50            | 3.70            |
| 4   | Per cent voids in mineral aggregate (VMA)                                                                                   | Minimum<br>11-13 per<br>cent   | 12.30           | 160             | 11.60           | 16.20           |
| 5   | Per cent voids in mineral aggregates filled by bitumen (VFB)                                                                | 65-75                          | 73.50           | 76.00           | 73.00           | 76.40           |
| 6   | Binder content, per cent by weight of total mix                                                                             | Minimum<br>4.5                 | 5.55            | 5.43            | 5.47            | 5.46            |

Vol. No.6, Issue No. 07, July 2017

#### www.ijarse.com

#### VIII. RESULTS AND CONCLUSIONS



- The physical properties of binder and coarse aggregates used for the study was tested and were aggregates satisfying the MORT&H vth revision requirements
- The Marshall test results for neat bitumen mix satisfies the requirement of MORT&H vth revision Table 500-24.
- The optimum binder content of E-waste replace mix will show increase in the content of binder.
- It is observed from the test results that there will be appreciable decrease in the bulk density of E-waste replaced mixes when compared to the neat bitumen mix.
- It is evident from test results that E-waste replace mix shows increase in the flow compared to normal mixes or neat bitumen mix.

#### **REFERENCES**

- [1.] ANWESHA BORTHAKUR AND KUNAL SINHA, "Electronic Waste Management in India: A Stakeholder's Perspective", *Electronic Green Journal*, vol. 1, no. 36, pp. 1-21, 2013.
- [2.] **AMANDEEP KAUR**, "The health impact of E-waste: Addressing the challenge", *International Journal of Scientific & Engineering Research*, vol. 4, no. 9, pp. 2413-2416, 2013.
- [3.] **KHANNA, S.K, JUSTO, A AND VEERARAGAVAN,** A.," Highway Materials and Pavement Testing", Nem Chand & Bros., Fifth edition 2009 Schedule of rate -2013, Public Works Department, Karnataka.
- [4.] LAWRENCE MUHWEZI, FAISAL KIBERU, MICHAEL KYAKULA AND ALEX O. BATAMBUZE,
- [5.] "An Assessment of the Impact of Construction Activities on the Environment in Uganda: A Case Study of Iganga Municipality", *KICEM Journal of Construction Engineering and Project Management*, vol. 2, no. 4, pp. 20-24, 2012.
- [6.] Ministry Of Road Transport & Highways Specifications for Road and Bridge Works, Fourth Revision, 2001.
- [7.] **Mr. YATEEN LOKESH,** "The global impact of E-waste: Addressing the challenge", International Labor Organization, 2012