Vol. No.6, Issue No. 06, June 2017 www.ijarse.com

Almost 8sp-Continuous Function

Jyoti

Department of Mathematics, R.C.C.V.Girls (P.G) College, Ghaziabad

ABSTRACT

A new class of functions is introduced in this paper. This class is called almost δ sp-continuity. This type of functions is seen to be strictly weaker than almost precontinuity. By using δ sp-open sets, many characterizations and properties of the said type of functions are investigated.

I. INTRODUCTION

The notion of δ sp-open set was introduced by E.Hatir and T. Noiri,[7] in 2006. We introduce here a new type of functions strictly weaker than almost precontinuity. We call this the almost δ sp-continuous functions. We investigate properties of such functions.

Throughout the present paper, spaces mean topological spaces and $f:(X, \tau) \to (Y, \sigma)$ (or simply $f:X \to Y$) denotes a function f of a space (X, τ) into a space (Y,σ) . Let A be a subset of a space X. The closure and the interior of A are denoted by cl(A) and int(A), respectively.

II. PRELIMINARIES

A subset A of a space X is said to be **regular open[23**] if A = int(cl(A)) and δ - **open[24**] if for each $x \in A$, there exists a regular open set W such that $x \in W \subset A$.

A subset A of a space X is said to be α -open[13] (resp. semi-open[8], preopen

[10], γ - open[6] or β - open[1] or semi-preopen[2]) if $A \subset \text{int}(\text{cl}(\text{int}(A)))$ (resp. $A \subset \text{cl}(\text{int}(A))$, $A \subset \text{cl}(\text{int}(\text{cl}(A)))$).

The complement of a regular open set is said to be regular closed[23]. The complement of a semi-open set is said to be semi-closed[5]. The intersection of all

Semi-closed sets containing a subset A of X is called the semi-closure[5] of A and is denoted by s-cl(A). The union of all semi-open sets contained in a subset A of X is called the semi - interior of A and is denoted by s-int(A). A point $x \in X$ is called a δ -cluster (resp. θ -cluster) point of A [24] if $A \cap \operatorname{int}(\operatorname{cl}(U)) \neq \phi$ (resp. $A \cap \operatorname{cl}(U) \neq \phi$) for each open set U containing x. The set of all δ - cluster (resp. θ - cluster) points of A is called the δ - closure (resp. θ - closure) of A and is denoted by δ - cl(A) (resp. θ - cl(A)). If δ - cl(A) = A (resp. θ -cl(A) = A), then A is said to be δ - closed (resp. θ - closed). The complement of a δ - closed (resp. θ - closed) set is said to be δ - open (resp. θ - open).

A subset S of a topological space X is said to be δ sp-open [7] iff $A \subseteq cl(int(\delta - cl(A)))$. The complement of a δ sp-open set is called a δ sp-closed set [7]. The union (resp. intersection) of all δ sp-open (resp. δ sp -closed) sets, each contained in (resp. containing) a set A in a topological space X is called the δ sp -interior (resp. δ sp - closure) of A and it is denoted by δ sp -int(A) (resp. δ ps-cl(A)) [7].

Vol. No.6, Issue No. 06, June 2017

www.ijarse.com

The family of all δ sp-open (resp. regular open, preopen, β -open. α -open, semi-open, δ -open) sets of a space X will be denoted by δ SPO(X) (resp. RO(X), PO(X), β O(X), α O(X), SO(X), δ O(X)). The family of all δ sp-closed (resp. regular closed, δ - closed) sets in a space X is denoted by δ SPC(X) (resp. RC(X), δ C(X)). The family of all δ sp-open (resp. regular open, δ - open) sets containing a point $x \in X$ will be denoted by δ SPO(X, X) (resp. RO(X, X), δ O(X, X)).

Lemma 1.Let A be a subset of a space X. Then

- (1) $\delta sp\text{-cl}(X-A) = X-\delta sp\text{-int}(A)$,
- (2) $x \in \delta sp\text{-cl}(A)$ if and only if $A \cap U \neq \phi$ for each $U \in \delta SPO(X,x)$,
- (3) A is δ sp-closed in X if and only if $A = \delta$ sp-cl(A),
- (4) δ sp-cl(A) is δ pclosed in X.

Lemma 2 (Noiri [17], [18]). For a subset of a space Y, the following hold:

- (1) α cl(V) = cl(V) for every $V \in \beta O(Y)$.
- (2) p cl(F) = cl(V) for every $V \in SO(Y)$.
- (3) s cl(V) = int(cl(V)) for every preopen set V of a space X.

Definition 3. A function $f:(X, \tau) \rightarrow (Y, \sigma)$ is said to be **almost \deltasp-continuous** if for each $x \in X$ and each $V \in RO(Y)$ containing f(x), there exists $U \in \delta SPO(X)$ containing x such that $f(U) \subset V$.

Definition 4. A function $f:(X,\tau)\rightarrow (Y,\sigma)$ is said to be

1.R - map [4] if $f^{-1}(V) \in RO(X)$ for every $V \in RO(Y)$.

2.almost continuous [21], $f^{-1}(V) \in \tau$, for every $V \in RO(Y)$.

3.almost α - continuous [16] $f^{-1}(V) \in \alpha O(X)$, for every $V \in RO(Y)$.

4.almost precontinuous [11], $f^{-1}(V) \in PO(X)$ for every $V \in RO(Y)$.

5.\delta-continuous[14]) if f $^1(V) \in \delta O(X)$ for every $V \in RO(Y)$.

Remark 5. The following implications hold:

al. contin. \Rightarrow al. α - contin. \Rightarrow al. precontin. \Rightarrow al. δ sp-contin.

The converses are not true in general.

Example 6. Let $X = \{a,b,c\}$ and $\tau = \{X,\phi,\{a,\{c\},\{b,c\}\}\}$. Let $f:X \to X$ be a function defined by f(a) = b,f(b) = a,f(c) = c. Then, f is almost δsp -continuous but not almost precontinuous.

Theorem 7. For a function $f:(X, \tau) \rightarrow (Y, \sigma)$, the following are equivalent:

- (1) f is almost δsp -continuous;
- (2) for each $x \in X$ and each $V \in \sigma$ containing f(x), there exists $U \in \delta SPO(X)$

Vol. No.6, Issue No. 06, June 2017

www.ijarse.com


```
containing x such that f(U) \subset int(cl(V));
(3) f^{-1}(F) \in \delta SPC(X) for every F \in RC(Y);
(4)f^{-1}(V) \in \delta SPO(X) for every V \in RO(Y).
(5) f(\delta sp\text{-cl}(A)) \subset \delta\text{-cl}(f(A)) for every subset A of X;
(6) \delta \operatorname{sp-cl}(f^{-1}(B)) \subset f^{-1}(\delta - \operatorname{cl}(B)) for every subset B of Y;
(7) f<sup>-1</sup>(F) \in \delta SPC(X) for every \delta - closed set F of (Y, \sigma);
(8) f^{-1}(V) \in \delta SPO(X) for every \delta - open set V of (Y, \sigma);
(9) \delta \text{sp-cl}(f^{-1}(\text{cl}(\text{int}(\text{cl}(B))))) \subset f^{-1}(\text{cl}(B)) for every subset B of Y;
(10) \delta sp\text{-cl}(f^{-1}(cl(int(F)))) \subset f^{-1}(F) for every closed set F of Y;
(11) \delta \operatorname{sp-cl}(f^{-1}(\operatorname{cl}(V))) \subset f^{-1}(\operatorname{cl}(V)) for every open set V of Y;
(12) f^{-1}(V) \subset \delta sp-int(f^{-1}(s-cl(V))) for every open set V of Y;
(13) f^{-1}(V) \subset int(\delta - cl(f^{-1}(s-cl(V)))) for every open set V of Y;
(14) f^{-1}(V) \subset \delta sp-int(f^{-1}(int(cl(V))))) for every open set V of Y;
(15) f^{-1}(V) \subset int(\delta - cl(f^{-1}(int(cl(V)))))) for every open set V of Y;
(16) \delta \operatorname{sp-cl}(f^{-1}(V)) \subset f^{-1}(\operatorname{cl}(V)) for each V \in \beta O(Y);
(17) \delta \operatorname{sp-cl}(f^{-1}(V)) \subset f^{-1}(\operatorname{cl}(V)) for each V \in \operatorname{SO}(Y);
(18) f^{-1}(V) \subset \delta sp\text{-pint}(f^{-1}(int(cl(V)))) for each V \in PO(Y);
(19) \delta \operatorname{sp-cl}(f^{-1}(V)) \subset f^{-1}(\alpha - \operatorname{cl}(V)) for each V \in \beta O(Y);
(20) \delta \operatorname{sp-cl}(f^{-1}(V)) \subset f^{-1}(\operatorname{p-cl}(V)) for each V \in SO(Y);
(21) f^{-1}(V) \subset \delta sp-int(f^{-1}(s-cl(V))) for each V \in PO(Y).
Proof. (1))\Rightarrow(2). Let x \in X and V \in \sigma containing f(x). We have int(cl(V)) \in RO(Y). Since f is almost \delta sp-
continuous, then there exists U \in \delta SPO(X, x) such
that f(U) \subset int(cl(V)).
(2) \Rightarrow (1). Obvious.
(3)\Leftrightarrow (4). Obvious.
(1))\Rightarrow(4). Let x \in X and V \in RO(Y, f(x)). Since f is almost\deltasp-continuous,
then there exists U_x \in \delta SPO(X,x) such that f(U_x) \subset V. We have U_x \subset f^{-1}(V).
Thus, f^{-1}(V) = \bigcup U_x \in \delta SPO(X).
(4))\Rightarrow(1). Obvious.
(1))\Rightarrow(5). Let A be a subset of X. Since \delta-cl(f(A)) is \delta-closed in Y ,it is
denoted by \cap { F_i: F_i \in RC(Y), i \in I}, where I is an index set. By (1)\Leftrightarrow(3),
we have A \subset f^{-1}(\delta - cl(f(A))) = \bigcap \{f^{-1}(F_i) : i \in I\} \in \delta SPC(X) and hence
\delta \operatorname{sp-cl}(A) \subset f^{-1}(\delta \operatorname{-cl}(f(A))). Therefore, we obtain f(\delta \operatorname{sp-cl}(A)) \subset \delta \operatorname{-cl}(f(A)).
(5) \Rightarrow (6). Let B be a subset of Y. We have f(\delta \operatorname{sp-cl}(f^{-1}(B))) \subset \delta - \operatorname{cl}(f(f^{-1}(B))) \subset \delta - \operatorname{cl}(B) and hence \delta \operatorname{sp-cl}(f^{-1}(B))
\subset f^{-1}(\delta - cl(B)).
```

(6)⇒(7). Let F be any δ - closed set of (Y, σ) . We have δ sp-cl(f $^{1}(F)$) \subset

Vol. No.6, Issue No. 06, June 2017

www.ijarse.com

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

 $f^{-1}(\delta - cl(F)) = f^{-1}(F)$ and hence $f^{-1}(F)$ is δsp -closed in (X, τ) .

(7) \Rightarrow (8). Let V be any δ - open set of (Y, σ) . We have $f^{-1}(Y - V) = X - f^{-1}(V) \in$

 $\delta SPC(X)$ and hence $f^{-1}(V) \in \delta SPO(X)$.

(8) \Rightarrow (1). Let V be any regular open set of (Y,σ) . Since V is δ - open in (Y,σ) ,

f $^{1}(V) \in \delta SPO(X)$ and hence,by (1), (4),f is almost δsp -continuous.

(1) \Rightarrow (9). Let B be any subset of Y. Assume that $x \in X-f^{-1}(cl(B))$. Then

 $f(x) \in Y - cl(B)$ and there exists an open set V containing f(x) such that $V - B = \phi$ hence int(cl(V))

 \cap cl(int(cl(B))) = ϕ . Since f is almost δ ps-continuous,

there exists $U \in \delta SPO(X,x)$ such that $f(U) \subset int(cl(V))$. Therefore, we have

 $U \cap f^{-1}(cl(int(cl(B)))) = \phi$ and hence $x \in X - \delta sp\text{-}cl(f^{-1}(cl(int(cl(B)))))$.

Thus we obtain $\delta sp\text{-cl}(f^{-1}(cl(int(cl(B))))) \subset f^{-1}(cl(B))$.

 $(9)\Rightarrow(10)$. Let F be any closed set of Y. Then we have

 $\delta sp\text{-}cl(f^{-1}(cl(int(F))) = \delta sp\text{-}cl(f^{-1}(cl(int(cl(F))))) \subset f^{-1}(cl(F)) = f^{-1}(F).$

(10)⇒(11). For any open set V of Y,cl(V) is regular closed in Y and we have

 $\delta sp\text{-}cl(f^{-1}(cl(V)) = \delta sp\text{-}cl(f^{-1}(cl(int(cl(V))))) \subset f^{-1}(cl(V)).$

(11) \Rightarrow (12). Let V be any open set of Y. Then Y -cl(V) is open in Y and by using

Lemma 2 we have $X - \delta sp\text{-int}(f^{-1}(s - cl(V))) =$

 $\delta \text{sp-cl}(f^{-1}(Y - \text{int}(cl(V)))) \subset f^{-1}(cl(Y - cl(V))) \subset X - f^{-1}(V).$

Therefore, we obtain $f^{-1}(V) \subset \delta sp-int(f^{-1}(s-cl(V)))$.

 $(12)\Rightarrow(13)$. Let V be any open set of Y. We obtain

 $f^{-1}(V) \subset \delta sp-int(f^{-1}(s-cl(V))) \subset int(\delta-cl(f^{-1}(s-cl(V)))).$

 $(13)\Rightarrow(1)$. Let x be any point of X and V any open set of Y containing

f(x). Then $x \in f^{-1}(int(cl(V))) \subset int(\delta - cl(f^{-1}(s - cl(int(cl(V)))))) = int(\delta - cl(int(cl(V)))))$

 $cl(f^{-1}(int(cl(V))))$. Thus, $f^{-1}(int(cl(V))) \in \delta SPO(X)$. Take $U = f^{-1}(int(cl(V)))$.

We obtain $x \in U$ and $f(U) \subset int(cl(V))$. Therefore, f is almost δsp -continuous.

 $(12) \Rightarrow (14)$ and (13), (15). Obvious.

(1) \Rightarrow (16). Let V be any β - open set of Y. It follows from [2, **Theorem 2.4**]

that cl(V) is regular closed in Y. Since f is almost δ sp-continuous, by (1), (3),

 $f^{-1}(cl(V))$ is δsp -closed in X. Therefore, we obtain δsp -cl($f^{-1}(V)$) $\subset f^{-1}(cl(V))$.

(16) \Rightarrow)(17). This is obvious since SO(Y) $\subset \beta$ O(Y).

(17)⇒(1). Let F be any regular closed set of Y. Then F is semi - open in Y

and hence $\delta sp\text{-cl}(f^{-1}(F)) \subset f^{-1}(cl(F)) = f^{-1}(F)$. This shows that $f^{-1}(F)$ is

 δ sp-closed. Therefore, by (1),(3), f is almost δ sp-continuous.

(1) \Rightarrow (18). Let V be any semi-preopen set of Y. Then V \subset int(cl(V)) and int(cl(V)) is regular open in Y. Since f is almost δ sp-continuous,by (1), (4),f⁻¹(int(cl(V)))

Vol. No.6, Issue No. 06, June 2017

www.ijarse.com

IJARSE ISSN (0) 2319 - 8354 ISSN (P) 2319 - 8346

is δ sp-open in X and hence we obtain that $f^1(V) \subset f^1(\operatorname{int}(\operatorname{cl}(V))) \subset \delta$ sp-int $(f^1(\operatorname{int}(\operatorname{cl}(V))))$. (18) \Rightarrow (1). Let V be any regular open set of Y. Then V is semi-preopen and $f^1(V) \subset \delta$ sp-int($f^1(\operatorname{int}(\operatorname{cl}(V))) = \delta$ sp-int($f^1(V)$). Therefore, $f^1(V)$ is δ sp-preopen in X and hence, by (1), (4), f is almost δ sp-continuous. (16) \Rightarrow (19) \Rightarrow (17) \Rightarrow (20) \Rightarrow (18)v, (21). Obvious.

Lemma 8.A set S in X is δ sp-open if and only if S \cap G $\in \delta$ SPO(X) for every δ - open set G of X. **Definition 9.** The δ sp-frontier of a subset A of X,denoted by δ sp-fr(A),is defined by δ sp-fr(A) = δ sp-cl(A) $\cap \delta$ sp-cl(X - A) = δ sp-cl(A) - δ sp-int(A).

Theorem 10. The set of all points x of X at which a function $f: X \to Y$ is not almost δ sp-continuous is identical with the union of the δ sp-frontiers of the inverse images of regular open sets containing f(x).

Proof. Let x be a point of X at which f is not almost δsp -continuous Then,there exists a regular open set V of Y containing f(x) such that $U \cap (X - f^{-1}(V)) \neq \emptyset$ for every $U \in \delta SPO(X,x)$. Therefore, we have $x \in \delta sp\text{-cl}(X-f^{-1}(V)) = X - \delta sp\text{-int}(f^{-1}(V))$ and $x \in f^{-1}(V)$. Thus, we obtain $x \in \delta sp\text{-fr}(f^{-1}(V))$.

Conversely, suppose that f is almost δ sp-continuous at $x \in X$ and let V be a regular open set containing f(x). Then there exists $U \in \delta SPO(X,x)$ such that $U \subset f^{-1}(V)$; hence $x \in \delta$ sp-int($f^{-1}(V)$). Therefore, it follows that $x \in X - \delta$ spfr($f^{-1}(V)$). This completes the proof.

Definition 11. A function $f: X \to Y$ is said to be weakly δsp -continuous if for each $x \in X$ and each open set X of X containing X containing X such that X containing X

Definition 12. Let (X,τ) be a topological space. The collection of all regular open sets forms a base for a topology τ_s . It is called the **semi regularization**. In case when $\tau = \tau_s$, the space (X,τ) is called semi-regular [23].

Theorem 13. Let (X,τ) be a semi-regular space. Then a function $f:(X,\tau) \to (Y,\sigma)$ is almost sp-continuous if and only if it is almost δ sp-continuous.

Definition 14. A function $f: X \to Y$ is said to be δ - almost continuous [20] if for Each $x \in X$ and each open set V of Y containing f(x), there exists $U \in \delta PO(X,x)$ such that $f(U) \subset V$.

Vol. No.6, Issue No. 06, June 2017

www.ijarse.com

IJARSE ISSN (0) 2319 - 8354 ISSN (P) 2319 - 8346

Definition 15. A function $f: X \to Y$ is said to be **\deltasp-irresolute** if for each $x \in X$ and each δ sp-open set V of Y containing f(x), there exists $U \in \delta SPO(X,x)$ such that $f(U) \subset V$.

Definition 16. A function $f: X \to Y$ is said to be **almost \deltasp-open** if $f(U) \subset \operatorname{int}(\operatorname{cl}(f(U)))$ for every δ sp-open set U of X.

Theorem 17. If $f: X \to Y$ is an almost δsp -open and weakly δsp -continuous function, then f is almost δsp -continuous.

Proof. Let $x \in X$ and let V be an open set of Y containing f(x). Since f is weakly δsp -continuous, there exists $U \in \delta SPO(X,x)$ such that $f(U) \subset cl(V)$. Since f is almost δsp -open, $f(U) \subset int(cl(f(U))) \subset int(cl(V))$ and hence f is almost δsp -continuous.

Definition 18. A space X is said to be (1) **almost regular** [22] if for any regular closed set F of X and any point $x \in X$ -F there exist disjoint open sets U and V such that $x \in U$ and $F \subset V$, (2) **semi - regular** if for any open set U of X and each point $x \in U$ there exists a regular open set V of X such that $x \in V \subset U$.

Theorem 19. If $f: X \to Y$ is a weakly δsp -continuous function and Y is almost regular, then f is almost δsp -continuous.

Proof. Let $x \in X$ and let V be any open set of Y containing f(x). By the almost regularity of Y, there exists a regular open set G of Y such that $f(x) \in G \subset cl(G) \subset int(cl(V))$ [22, Theorem 2.2]. Since f is weakly δ sp-continuous, there exists $U \in \delta SPO(X,x)$ such that $f(U) \subset cl(G) \subset int(cl(V))$. Therefore, f is almost δ sp-continuous.

Theorem 20. If $f: X \to Y$ is an almost δ sp-continuous function and Y is semi regular, then f is δ - almost continuous.

Proof. Let $x \in X$ and let V be an open set of Y containing f(x). By the semi regularity of Y, there exists a regular open set G of Y such that $f(x) \in G \subset V$. Since f is almost δ sp-continuous, there exists $U \in \delta SPO(X,x)$ such that $f(U) \subset int(cl(G)) = G \subset V$ and hence f is δ - almost continuous.

Theorem 21. Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then the following hold:

- (1) If f is almost δ sp-continuous and g is an R map, then the composition go f: $X \to Z$ is almost δ sp-continuous,
- (2) If f is δ sp-irresolute and g is almost δ sp-continuous, the composition go f: $X \to Z$ is almost δ sp-continuous.

Definition 22. A function $f: X \to Y$ is said to be **faintly \delta sp-continuous**if for

Vol. No.6, Issue No. 06, June 2017

www.ijarse.com

each $x \in X$ and each θ - open set V of Y containing f(x), there exists $U \in \delta SPO(X,x)$ such that $f(U) \subset V$.

Theorem 23. Let $f: X \to Y$ be a function. Suppose that Y is regular. Then, the following properties are equivalent:

- (1) f is δ almost continuous,
- (2) f⁻¹(δ -cl(B)) is δ sp-closed in X for every subset B of Y,
- (3) f is almost δ sp-continuous,
- (4) f is weakly δsp-continuous,
- (5) f is faintly δ sp-continuous.

Proof. (1) \Rightarrow (2). Since δ -cl(B) is closed in Y for every subset B of Y, $f^{-1}(\delta$ -cl(B)) is δ sp-closed in X.

(2) \Rightarrow (3). For any subset B of Y,f $^1(\delta \text{-cl}(B))$ is δ sp-closed in X and hence we have δ sp-cl(f $^1(B)$) $\subset \delta$ sp-cl(f $^1(\delta \text{-cl}(B))$) = f $^1(\delta \text{-cl}(B))$. It follows that

f is almost δ sp-continuous

- $(3) \Rightarrow (4)$. This is obvious.
- (4)⇒(5). Let A be any subset of X. Let $x \in \delta sp\text{-cl}(A)$ and V be any open set

of Y containing f(x). There exists $U \in \delta SPO(X,x)$ such that $f(U) \subset cl(V)$. Since

 $x \in \delta sp\text{-cl}(A)$, we have $U \cap A \neq \emptyset$ and hence $\emptyset \neq f(U) \cap f(A) \subset cl(V) \cap f(A)$.

Therefore,we have $f(x) \in \theta$ -cl(f(A)) and hence $f(\delta sp\text{-cl}(A)) \subset \theta$ -cl(f(A)).

Let B be any subset of Y. We have $f(\delta sp\text{-cl}(f^{-1}(B))) \subset \theta \text{-cl}(B)$ and

 $\delta sp\text{-cl}(f^{-1}(B)) \subset f^{-1}(\theta - cl(B))$. Let F be any θ -closed set of Y. It follows that $\delta sp\text{-cl}(f^{-1}(F)) \subset f^{-1}(\theta - cl(F)) = f^{-1}(F)$. Therefor $f^{-1}(F)$ is $\delta sp\text{-closed}$ in X and hence f is faintly $\delta sp\text{-continuous}$.

(5) \Rightarrow (1). Let V be any open set of Y. Since Y is regular, V is θ - open in Y. By

the faint δ sp-continuity of f, f⁻¹(V) is δ sp-open in X. Therefore, f is δ - almost continuous.

Recall that a space (X,τ) is said to be (1) submaximal [3] if every dense subset

of X is open in X,(2) extremally disconnected [3,15] if $cl(U) \in \tau$ for every $U \in \tau$.

Definition 24. A function $f: X \to Y$ is said to be

1.faintly continuous [9], if $f^{-1}(V)$ is open in X for each θ - open set V of Y.

2.faintly semi – **continuous** [19], if $f^{-1}(V)$ is semi-open in X for each θ - open set V of Y

3.faintly precontinuous [19], if $f^{-1}(V)$ is pre-open in X for each θ - open set V of of Y

4.faintly \beta - continuous [12], [19], if $f^{-1}(V)$ is β -open in X for each θ - open set V of of Y

5.faintly \alpha - continuous [12] if $f^{-1}(V)$ is α -open in X for each θ - open set V of of Y.

Theorem 25. If (X,τ) is submaximal extremally disconnected semi-regular and

 (Y,σ) is regular, then the following are equivalent for a function $f:(X,\tau)\to (Y,\sigma)$:

(1) f is faintly continuous,

Vol. No.6, Issue No. 06, June 2017

www.ijarse.com

- (2) f is faintly α continuous,
- (3) f is faintly semi continuous,
- (4) f is faintly precontinuous,
- (5) f is faintly δ sp-continuous,
- (6) f is faintly γ continuous,
- (7) f is faintly β continuous,
- (8) f is δ almost continuous,
- (9) f is almost δ sp-continuous,
- (10) f is weakly δ sp-continuous.

REFERENCES

- [1] M. E. Abd El Monsef, S. N. El Deeb and R. A. Mahmoud, β open sets and β continuous mappings, Bull Fac. Sci. Assiut Univ., 12(1983),77 90.
- [2] D. Andrijevi'c, Semi preopen sets, Mat. Vesnik, 38(1986), 24 32.
- [3] N. Bourbaki, General Topology, Part I,addison Wesley,reading,Mass.,(1996).
- [4] D. Carnahan,Some Properties Related to Compactness in Topological Spaces,Ph.D. Thesis (Univ. Arkansas,1973).
- [5] S. G. Crossley and S. K. Hildebrand, Semi closure, Texas J. Sci., 22(1971) 99 112.
- [6] A. El Atik, A study of some types of mappings on topological spaces, MSc Thesis, Tanta Univ., Egypt, (1997).
- [7] E.Hatir and T.Noiri, Decompositions of continuity and complete continuity. *Acta Math. Hungar*, 113, 2006, 281-287.
- [8] N. Levine, Semi open sets and semi continuity in topological spaces, Amer. Math.Monthly, 70(1963), 36 41.
- [9] P. E. Long and L. L. Herrington, The $T\mu$ topology and faintly continuous functions, Kyungpook Math. J.,22(1982),7 14.
- [10] S. Mashhour, M. E. Abd El Monsef and S. N. El Deeb, On pre continuous and weakprecontinuous mappings, Proc. Math. Phys. Soc. Egypt,53(1982),47 53.
- [11] A. Nasef and T. Noiri, Some weak forms of almost continuity, Acta Math. Hungarica,74(3)(1997),211 219.
- [12] A. Nasef, Another weak forms of faint continuity, Chaos, Solitons and Fractals, 12(2001), 2219 2225.
- [13] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 96J 970.
- [14] T. Noiri, On δ -continuous functions, J. Korean Math. Soc., 16(1980),161 166.
- [15] T. Noiri, Characterizations of extremally disconnected spaces, Indian J. Pure Appl.Math., 19(1988),325 329.
- [16] T. Noiri, Almost α continuous functions, Kyungpook Math. J.,28(1988),71 77.

Vol. No.6, Issue No. 06, June 2017

www.ijarse.com

- [17] T. Noiri, On almost continuous functions, Indian J. Pure Appl. Math., 20(1989), 571 576.
- [18] T. Noiri, Almost quasi continuous functions, Bull. Inst. Math. Acad. Sinica, 18(1990), 321 332.
- [19] T. Noiri and V. Popa, Weak forms of faint continuity, Bull. Math. Soc. Sci. Math.Roumanie, 34(82)(1990), 270 363.
- [20] S. Raychaudhuri and M. N. Mukherjee, On δ almost continuity and δ preopen sets, Bull. Inst. Math. Acad. Sinica, 21(4)(1993), 357 366.
- [21] M. K. Singal and A. R. Singal, Almost continuous mappings, Yokohama Math. J., 16(1968), 63 73.
- [22] M. K. Signal and S. P. Arya, On almost regular spaces, Glasnik Mat. III, 4(24)(1969), 89 99.
- [23] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937) 375 381.
- [24] N. V. Veli*cko,H closed topological spaces,Amer. Math. Soc. Transl. (2),78(1968), 103 118.