International Journal of Advance Research in Science and Engineering 4,
Vol. No.6, Issue No. 05, May 2017

www.ijarse.com

JARSE
ISSN (0) 2319 - 8354
ISSN (P) 2319 - 8346

PROGRAMMABLE NETWORKS USING SOFTWARE
DEFINED NETWORKING

Harkirat Kaur', Navjot Jyoti
12 Computer Science and Engg, North West Group of Institutions, Moga (INDIA)

ABSTRACT

Control plane and Data plane are two elements of network devices. Both the elements, software (control plane)
and hardware (data plane) are tightly integrated into same device. It means if we have a firewall device it
perform the functionality of only firewall. Any type of modification in the behavior is very error prone task. In
Software Defined Networking, the software part of the device is shifted to central place. This shifted portion is
called SDN controller. Now the device is simply forwarding device. It is a simple merchant silicon box that
contains no functionality. The behavior of device depends upon the controller. According to application
running on controller, the dumb device act as firewall, load balancer and switch. SDN enables innovation in the
network. The two planes or elements communicate with each other using OpenFlow protocol. In this paper, we
discuss about components of SDN, experiment tools, applications and use cases.

Keywords: OpenFlow Protocol, Software Defined Networking, ForCES, POX, Mininet

I. INTRODUCTION
There are number of devices available in the traditional network such as firewall, routers, switches, load
balancer, intrusion detection system, and intrusion prevention system. In these devices data plane that actually
forward the packet and control plane that control the behavior of data plane are tightly coupled into same device.
So modification in existing behavior of such devices is very complex and error prone task. Secondly vendors
write the code and there is long delay to introducing new features in these devices. So network administrator
configures each device separately as specified by vendor. It is also very difficult because different configuration
is required even for the products are from same vendor. This means innovation in traditional networks is very
complex, error prone, time consuming process. The operational and capital cost is also very high.
To remove the problems of traditional networks, Software Defined Networking (SDN) gained very much
popularity in the field of networking. Basically Software Defined Networking is a hew networking approach in
which the data plane is decoupled from control plane as shown in Fig. 1. Software Defined Networking
simplifies the network management and also enables innovation in the network [1]. In software defined
networking the shifted control plane is called controller. This centralized controller manages the behavior of the
data plane. Now the data plane is a simple packet forwarding device that does not perform any function itself.
The data plane performs the action on the packet specified by the control plane. OpenFlow and ForCES are
protocols that are used for communication between data plane and centralized control plane. The Open Network
Foundation (ONF) [2] is an organization that promotes SDN. The SDN is relatively new field and growing at
fast speed. There are number of challenges are to be addressed [3]. Due to separation between two planes it is
57|Page

International Journal of Advance Research in Science and Engineering Q
Vol. No.6, Issue No. 05, May 2017
ISSN (0) 2319 - 8354

www.ijarse.com ISSN (P) 2319 - 8346
very easy to deployed new applications. We can write an application in any programming language according to

JARSE

controller and run that application on controller. According to the logic written in that application, the same data
plane act as a firewall, load balancer, switch, and intrusion detection system. So by writing applications we can
convert dumb device into powerful networking device.

Control Plane Control Plane
Data Plane Data Plane
Switch Router

o
»
lx\

Traditional Network Devices

Control Plane Control Plane
Data Plane Data Plane
Load Balancer Firewall

Fig. 1 traditional network

1. SOFTWARE DEFINED NETWORKING ARCHITECTURE

There are number of components such as forwarding device (data plane), controller (control plane), southbound
interface (interface between data plane and control plane), northbound interface (interface between control plane
and applications) in software defined network architecture [4]. By writing applications at management plane and
run that applications on control plane, we can convert the dumb device or forwarding plane into powerful and
low cost firewall, load balancer, switch.

2.1 Forwarding Device

The main task of forwarding device is to forward the incoming packet to particular destination. Traditional
network consist of different types of these network devices such as load balancer, firewall, switch. If we have a
firewall device then it acts only as a firewall and if we have load balancer device it perform the functionality of
only load balancing. The software and hardware part of such devices are tightly coupled. But in SDN the
forwarding devices are simply dumb devices that do not perform any task [5]. According to instructions given
by the control plane these same devices act as a firewall, load balancer or switch as shown in Fig. 2. OpenFlow
protocol is used for communication between the two planes. These devices are also called openflow switches.
There are basically two types of openflow switches available: hybrid switches and pure switches. Pure switch
completely support the SDN architecture. But in Hybrid switches traditional network features plus openflow
features are supported simultaneously. Because SDN is very new concept in networking so till now only hybrid

switches are available in the market.

58|Page

International Journal of Advance Research in Science and Engineering Q
Vol. No.6, Issue No. 05, May 2017

www.ijarse.com

TJARSE
ISSN (0) 2319 - 8354
ISSN (P) 2319 - 8346

routing | |firewalling ||load balancing]| Other Net Apps

L LS L z
: Network :
Applications : :
: : Northbound API
Y Y y v
Controller
4
Southbound API
Forwarding Device [R Forwarding Device
, i OpenFlow Software,
PN Hardware Switches
Forwarding Device [------------r=mmoe Forwarding Device

Fig. 2 SDN architecture

2.2 Southbound Interface

ForCES and OpenFlow are two southbound interfaces in SDN architecture that are used for communication
between openflow switches and controller.

2.2.1 ForCES

Forwarding and Control Element Separation (ForCES) consists of two elements. One is forwarding element
(FE) and the other is control element (CE). The forwarding element is same as data plane in Openflow that only
forward the packet. The control element is same as control plane that instructs to the FE what action is to be
performed. ForCES protocol use master slave model in which control element is master and forwarding element
is slave. Logical Function Block is main part of ForCES architecture.

2.2.2 OpenFlow

SDN devices use openflow protocol for communication between separated data plane and control plane. An
OpenFlow switch consists of flow table which contains number of rules [6]. There are number of fields in every
flow rule. The first field in flow table is matching fields that are used to identify the packet src mac, destination
mac, src ip, destination ip, src port and destination port as shown in Table I. The second field is actions that

specify what to do with the packet like forward, drop the packet as shown in Table II.

59|Page

International Journal of Advance Research in Science and Engineering Q
Vol. No.6, Issue No. 05, May 2017

www.ijarse.com

TABLE | MATCH FIELDS

Ingress Port

Source MAC

Destination MAC

Ethernet type

VLAN id

VLAN priority

Source IP

Destination IP

IP Protocol

IP TOS bits

Source Port

Destination Port

TABLE Il ACTIONS

Action

Description

Forward

Forward packets to a specified port.

Flood

Forward packets to all ports except incoming port.

Modify Field

Modify the header fields of packet.

Drop

Drop the packet.

Controller

Send the packet to the controller.

Local

Send packet to local switch.

JARSE
ISSN (0) 2319 - 8354
ISSN (P) 2319 - 8346

Last field is counter that is used for counting the number of packets and flows. When the packet reaches at the

switch, switch checks its flow entries in flow table. If the packet matches then action is to be performed on that

packet according to the action specified otherwise drop the packet or forward the packet to the controller. Secure

channel is used by the openflow switch for communication with the controller.

2.3 Controller

In software defined network the controller is the brain of the network because it manages the openflow switches

using openflow protocol. It is the main part of the SDN architecture because all the logic of the openflow device

is placed on the controller. Controller inserts flow rules into flow table of switch according to the application

written on top of the controller. Controller is placed between openflow switch and applications [7]. There are
various types of controller available such as POX [8], NOX [9], Floodlight [10], Beacon [11], Trema [12] and

60|Page

International Journal of Advance Research in Science and Engineering 49
Vol. No.6, Issue No. 05, May 2017 IJARSE

& ISSN (0) 2319 - 8354
www.jjarse.com ISSN (P) 2319 - 8346

all these controllers are written in different languages as shown in Table Ill. All type of traffic between
openflow devices and applications passes through the controller.

TABLE 111 SDN CONTROLLERS

Name Language | Description

Ovs C A reference controller

Nox C++ The first OpenFlow controller

Pox Python Open source SDN controller

Ryu Python Ryu is a component-based software defined networking framework

Trema Ruby, C A framework for developing OpenFlow controller

Floodlight | Java OpenFlow controller that work with physical and virtual OpenFlow switches.
Beacon Java A cross platform, modular OpenFlow controller

2.3.1 Distributed controller

When the size of network increases more requests are send to the controller. In this case single controller may
fail to handle all incoming requests. To remove this problem distributed control plane is used in which control
plane elements is physically distributed into number of places. Onix, Kandoo, HyperFlow are the examples of
distributed control planes.

2.3.2 Reactive vs Proactive

There are two methods available by which controller sends the instructions to openflow switch about how to
handle particular packet. In Reactive approach, packet is matched against flow table entry, if first time packet
does not match against flow rules so that packet is send to controller. Then controller inserts flow entries into
flow table of switch. In Proactive approach, controller proactively install the rules into flow table of switch so
that packets are handled by openflow switch itself according to flow rules.

2.4 Northbound Interface

It is an interface between controller and applications. By using this interface we can develop number of
applications such as router, switch, firewall, load balancer. On the other hand, a southbound interface provides a

communication between the forwarding device and controller.

I11. SDN EXPERIMENTAL TOOLS

For testing applications developed in software defined networking we need some tools such as emulators and
simulators. Mininet is an emulator tool by which we can build a large network. The large network can contain
very large number of hosts, switches and controller [13]. The choice is very good if our network should contain
hundred of hosts, virtual openflow switches and a controller. The disadvantage of mininet is that it is limited
with the resources of single PC. It has many advantages over other tools like simulators and testbeds. It is very
cost effective, easily configurable tool. It is very close to real environment. The application that runs in mininet

can also run in real environment. There are number of simulator such as EstiNet and NS-3. We can also use

6l|Page

International Journal of Advance Research in Science and Engineering 49
Vol. No.6, Issue No. 05, May 2017

www.ijarse.com
testbeds such as GENI [14], VENI [15] but are not very flexible.

Mininet emulator is a tool that is widely used for SDN experiments. Mininet is installed on single PC and we

JARSE
ISSN (0) 2319 - 8354
ISSN (P) 2319 - 8346

can create an experiment setup consisting of hosts, switches and controller with the limited resources of single
PC. Basically there are testbeds also available but configuration of testbeds is very complex task. Mininet is
easily configurable, quickly and easily available tool as compared to testbeds. Numbers of topologies are
already available in mininet but we can also create topology according to our needs by writing a code in python
language. If we run a code in simulators, it cannot run in real lab setup. But mininet code can run without

modification in both environments.

IV.SDN APPLICATIONS

In this section we will provide some application examples on using SDN and OpenFlow.

4.1 SDN in Research

It is very difficult to test new strategies and innovative ideas on existing networks for solving problems. Internet
is bringing new challenges with every passing day. SDN helps us in testing future internet applications without
disturbing existing network. SDN separates hardware from the software. This enables us in experimenting new
architecture on internet.

4.2 Data Center and SDN

There Computing Virtualization has made it extremely easy to automatic provision of servers in data centers.
Storage virtualization such as SAN has made automatic provisioning of storage very easy. But one main
component that is networking has been the bottleneck. SDN has changed this by allowing automatic
provisioning of networking thus enabling the concept of SDDC (Software Defined Data Center). SDN is going
to be the integral part of SDDC.

4.4 SDN in the WAN and LAN

With the increased usage of BYOD and SAAS, it is getting very difficult to manage WAN. But SDN is helping
in solving these issues by allowing dynamic provisioning of network resources. SDN is also enabling easy
combined wired and wireless network management, BYOD control and better security.

4.5 SDN in security

It allows greater access control mechanism and increased security. SDN offers more visibility thus allowing
better network monitoring, traffic engineering and deep packet analysis.

4.6 SDN in cloud

A new type of cloud service known as NAAS (Network as a service) is emerging. It will allow dynamic

provisioning of Routers, Switches, Firewalls and Load Balancers.

V. CONCLUSION

Traditional Network devices are complex and difficult to manage. Basically, main problem with traditional
network devices is that software is bundled with hardware and interfaces are vendor specific like in the case of
Cisco devices where 10S operating system and hardware is tightly coupled into the same device. Therefore

vendor write the code and there are long delay in introducing new features in these devices. Software defined

62|Page

International Journal of Advance Research in Science and Engineering 49
Vol. No.6, Issue No. 05, May 2017
ISSN (0) 2319 - 8354

WwWw.ljarse.com ISSN (P) 2319 - 8346
networking solve these problems by decoupling the control plane from data plane. Openflow is the protocol that

JARSE

is used for communication between control plane and data plane. According to the application written on the
control plane, we can convert simple openflow device into firewall device, load balancer device or any other
device. SDN is gaining lot of attention from academia and industry. It is the biggest that has happen in last thirty

years in networking field.

REFERENCES

[1] Kim, Hyojoon, and Nick Feamster. "Improving network management with software defined networking."
Communications Magazine, IEEE 51, no. 2 (2013): 114-119.

[2] Schneider, Fabian, Takashi Egawa, Sibylle Schaller, Shin-ichiro Hayano, Marcus Scholler, and Frank
Zdarsky. "Standardizations of SDN and ITs practical implementation.” NEC Technical Journal, Special
Issue on SDN and Its Impact on Advanced ICT Systems 8, no. 2 (2014).

[3] Yeganeh, Soheil Hassas, Amin Tootoonchian, and Yashar Ganjali. "On scalability of software-defined
networking." Communications magazine, IEEE 51, no. 2 (2013): 136-141.

[4] Jarraya, Yosr, Taous Madi, and Mourad Debbabi. "A survey and a layered taxonomy of software-defined
networking." Communications Surveys & Tutorials, IEEE 16, no. 4 (2014): 1955-1980.

[5] Rowshanrad, Shiva, Sahar Namvarasl, Vajihe Abdi, Maryam Hajizadeh, and Manijeh Keshtgary. "A survey
on SDN, the future of networking." Journal of Advanced Computer Science & Technology 3, no. 2 (2014):
232.

[6] Naous, Jad, David Erickson, G. Adam Covington, Guido Appenzeller, and Nick McKeown. "Implementing
an openflow switch on the NetFPGA platform."” In Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, pp. 1-9. ACM, 2008.

[7] Shalimov, Alexander, Dmitry Zuikov, Daria Zimarina, Vasily Pashkov, and Ruslan Smeliansky. "Advanced
study of SDN/OpenFlow controllers." In Proceedings of the 9th Central & Eastern European Software
Engineering Conference in Russia, p. 1. ACM, 2013.

[8] Khondoker, Rahamatullah, Adel Zaalouk, Ronald Marx, and Kpatcha Bayarou. "Feature-based comparison
and selection of Software Defined Networking (SDN) controllers.” In Computer Applications and
Information Systems (WCCAIS), 2014 World Congress on, pp. 1-7. IEEE, 2014.

[9] Shah, Syed Ahmar, Jawad Faiz, Maham Farooq, Aamir Shafi, and Syed Atif Mehdi. "An architectural
evaluation of SDN controllers." In Communications (ICC), 2013 IEEE International Conference on, pp.
3504-3508. IEEE, 2013.

[10] Wallner, Ryan, and Robert Cannistra. "An SDN approach: quality of service using big switch’s floodlight

open-source controller." Proceedings of the Asia-Pacific Advanced Network 35 (2013): 14-19.

[11] Monaco, Matthew, Oliver Michel, and Eric Keller. "Applying operating system principles to SDN
controller design.” In Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks, p. 2. ACM,
2013.

63|Page

International Journal of Advance Research in Science and Engineering Q
Vol. No.6, Issue No. 05, May 2017 IJARSE

& ISSN (0) 2319 - 8354
www.jjarse.com ISSN (P) 2319 - 8346

[12] Ivashchenko, Pavel, Alexander Shalimov, and Ruslan Smeliansky. "High performance in-kernel
SDN/OpenFlow controller.” Proceedings of the 2014 Open Networking Summit Research Track, USENIX
(2014).

[13] Wang, Shie-Yuan. "Comparison of SDN openflow network simulator and emulators: EstiNet vs.
Mininet." In Computers and Communication (ISCC), 2014 IEEE Symposium on, pp. 1-6. IEEE, 2014.

[14] Berman, Mark, Jeffrey S. Chase, Lawrence Landweber, Akihiro Nakao, Max Ott, Dipankar Raychaudhuri,
Robert Ricci, and Ivan Seskar. "GENI: A federated testbed for innovative network experiments."
Computer Networks 61 (2014): 5-23.

[15] Sonkoly, Balazs, Felician Németh, Levente Csikor, Laszl6 Gulyas, and Andras Gulyas. "SDN based
testbeds for evaluating and promoting multipath TCP." In Communications (ICC), 2014 IEEE
International Conference on, pp. 3044-3050. IEEE, 2014.

64|Page

