International Journal of Innovative Research in Science and Engineering
Vol. No.3, Issue 06, June 2017 sk

www.ijirse.com ISSN (0) 2454-9663
ISSN (P) 2454-0663

A Comparative Analysis of Multiple Pattern Matching

Algorithms

Renuka S. Matkar, 2Yogeshwar. M. Kurwade ,°Dr. Vilas M. Thakare
SGBAU, Amravati, Maharashtra, (India)

ABSTRACT

Multiple pattern matching algorithm is a type of string searching algorithm. From a given finite set of strings
(patterns), it can locate all patterns’ locations simultaneously in a text string. Pattern matching plays an
important role in many computer related fields, such as information retrieval, intrusion detection, data
compression, content filtering, gene sequence comparison and computer virus signature matching. It is a basic
problem in computer science. There are many multiple pattern matching algorithms but to provide the better
results, a comparative study of all of them is necessary. The comparative analysis gives us the clear idea to
choose the best algorithm for pattern matching problem. In this paper, the comparative analysis of the most
widely used multiple pattern matching algorithms is given. This paper analyzes and discusses about the widely
used multiple string pattern matching algorithms and also proposes a new multi pattern matching algorithm
using frequently used groups. The mostly used algorithms discussed in this paper are: the Aho-Corasick
algorithm, the Commentz-Walter algorithm, and the Wu-Manber algorithm. The comprehensive analysis and
discussion also helps for the better understanding of the pattern matching problem. A theoretical and
experimental result of the algorithm is presented in this paper. The paper is concluded with the solution for the
multi-pattern matching problem with a new algorithm.

Index Terms—Algorithms, Frequently Used Groups, Pattern Matching, String Matching, String

Searching

1. INTRODUCTION

String pattern matching or searching is the act of checking for the presence of the constituents of a given pattern
in a given text where the pattern and the text are strings over some alphabet. Pattern matching plays an
important role in many computer related fields, such as information retrieval, intrusion detection, data
compression, content filtering, gene sequence comparison and computer virus signature matching. [1][2][3].
Pattern matching algorithms belong to computationally intensive algorithms. It can be classified into single
pattern matching and multi-pattern matching according to the number of matching patterns. Single-pattern
matching came first, and there are some classic algorithms such as the Knuth-Morris-Pratt (KMP) algorithm and
the Boyer-Moore (BM) algorithm, which offer some lessons and inspirations for the development of later multi-
pattern matching algorithm [1]. Multi pattern matching algorithm can find all occurrences of multiple patterns

with only once scanning. It is more complex

48|Page

International Journal of Innovative Research in Science and Engineering
Vol. No.3, Issue 06, June 2017 sk

www.ijirse.com ISSN (0) 2454-9663
ISSN (P) 2454-0663

to implement but a wider range of applications than single-pattern matching algorithm. In a multiple pattern

matching, from a given finite set of strings (patterns), it can locate all patterns’ locations simultaneously in a text
string. Multiple pattern matching algorithms can be used in data mining area to find selected interesting patterns,
security area to detect certain suspicious keywords or even biological field for DNA searching [2]. Pattern
matching is one of the major issues in the area of computational biology. Biologists search database for
important information in different directions. Pattern matching will continue to grow and need changes from
time to time. The analysis of Protein and DNA sequence data has been one of the most active research areas in
the field of computational molecular biology. Pattern Discovery is one of the fundamental problems in
Bioinformatics. It can be used in Protein structure and function prediction [3]. The pattern matching algorithm is
the core algorithm of the entire anti-virus software. Combining the advantages of fast calculation of hash
function and parallel pattern matching of automata, it has significant performance advantages in the
circumstance of virus signature matching [4]. Multiple string pattern matching problems has been a topic of
intensive research that has resulted in several approaches for the solution such as multiple keyword
generalization of Boyer Moore algorithm, Boyer-Moore-Horspool algorithm, Aho-Corasick algorithm,
Commentz-Walter algorithm, Fan-Su algorithm, Wu-Manber algorithm, and Set Backward Oracle Matching
(SBOM) algorithm. The most popular and widely used solutions for the multi-pattern matching problem are:
Aho-Corasick algorithm, Commentz-Walter algorithm, and Wu-Manber Algorithm [5].

This paper mainly presents the analysis of mostly used algorithms for multiple string pattern matching
problems: the Aho-Corasick algorithm, the Commentz-Walter algorithm, and the Wu-Manber algorithm.
Experimental results of these algorithms are included for the analysis and discussion about multiple pattern
matching problems. This paper also discusses the main theoretical results for each of the algorithm. The
performance of each algorithm is shown against the length of pattern and the number of pattern in a pattern set.
This paper covers the comprehensive analysis and discussion of these selected algorithms as a state-of-the-art
along with some experimental results. A comprehensive study on all the existing algorithms of multiple pattern
matching problems is a very demanding material in the research area of multiple pattern matching problems. In

short, this paper provides the best solution on any type of pattern matching problem in easier manner.

1. BACKGROUND

Along with the rapid development of computer technology, people's lives are increasingly dependent on
computers. The rapid development of the Internet increases the freedom of application. But at the same time,
because of its inherent openness, universality and freedom, it requires a higher demand of information security.
Pattern matching algorithms can be classified into single pattern matching and multi-pattern matching according
to the number of matching patterns. Single-pattern matching appeared first, and there are some classic algorithm
such as the Knuth-Morris-Pratt (KMP) algorithm and the Boyer-Moore (BM) algorithm, which offer some
lessons and inspirations for the development of later multi-pattern matching algorithm. The basic need of pattern
matching is proposed in [1].

Multiple pattern matching problem is a basic problem in computer science. As a solution, many algorithms are
generated. Aho-Corasick algorithm, a variant of the Knuth-Morris-Pratt algorithm, was the first algorithm to

solve the multiple string pattern matching problems in linear time based on automata approach. Commentz-

49|Page

International Journal of Innovative Research in Science and Engineering
Vol. No.3, Issue 06, June 2017

www.ijirse.com ISSN (0) 2454-9663
ISSN (P) 2454-0663

Walter presented an algorithm for the multi-pattern matching problem that combines the Boyer-Moore

technique with the Aho-Corasick algorithm. Commentz-Walter combines the filtering functions of the single
pattern matching Boyer-Moore algorithm and a suffix automaton to search for the occurrence of multiple
patterns in an input string. Wu-Manber algorithm is a simple variant of the Boyer-Moore algorithm that uses the
bad character shift for multiple pattern matching. Mostly used algorithms for multiple pattern matching are
discussed in [2].

Brute-force algorithm performs a checking, at all positions in the text between 0 and n-m, whether an
occurrence of the pattern starts there or not. The Boyer-Moore Algorithm works with a backward approach, the
target string is aligned with the start of the check string, and the last character of the target string is checked
against the corresponding character in the check string. The Index based Pattern Matching using Multithreading
method performs pre-processing to get the index of the first character of the pattern in the given text. By using
this index as the starting point of matching, it compares the Text contents from the defined point with the pattern
contents. An improved approach for multi pattern matching using index base method is proposed in [3].

IAC: an improved multi-pattern matching algorithm based on AC algorithm. AC algorithm is a string searching
algorithm invented by Alfred V. Aho and Margaret J. Corasick. AC algorithm constructs a finite state machine
consisting of Goto, Failure and Output Functions. Goto Function is graph (tree). An improved approach for
existing AC algorithm is presented in [4].

Solutions to different problems were proposed by Commentz Walter in 1979 [5] and Navarro Raffinot [5] in
2002. Both offered sub linear time solutions for single pattern matching. Recently, Khancome and Boonjing
proposed searching techniques which used shift table algorithms at their core. Now-a-days, clustering and hash
based technology to prevent intrusion detection system is used on widespread. The recent applications of pattern
matching are proposed in [5].

This paper is organized as follows: Section | describes a brief introduction to multiple pattern matching. Section
Il briefly describes the background of multiple pattern matching algorithms specifically Aho-Corasick,
Commentz-Walter, and the Wu-Manber algorithm. Section Il outline the experiment methodology for new
multi pattern matching algorithm using frequently used groups, Section IV presents the experimental results on
the multiple pattern matching algorithms, Section V presents the analysis and discussion on pattern matching

problem based on the experimental results and existing works, and Section VI gives the conclusion of this paper.

I11. PREVIOUS WORK DONE

S.Nirmala Devi et al. (2012) [4] and Dr.S.P Rajagopalan et al. (2012) [4] proposed the Index based Pattern
Matching using Multithreading method performs pre-processing to get the index of the first character of the
pattern in the given text. By using this index as the starting point of matching, it compares the Text contents
from the defined point with the pattern contents. Raju Bhukya et al. (2012) [4] and DVLN Somayajulu et al.
(2011) [4] proposed IBSPC. In IBSPC indexes has been used for the DNA sequence. After creating the index
the algorithm will search for the pattern in the string using the index of least occurring character in the string.

Raju Bhukya et al. (2010) [3] and DVLN Somayajulu et al. (2010) [3] proposed IFBMPM. In IFBMPM to
search some pattern P in text S, it start the search from the indexes stored in the row of index table which

corresponds to the first character of the pattern P. If any character mismatches in its position, we skip the search

50|Page

International Journal of Innovative Research in Science and Engineering
Vol. No.3, Issue 06, June 2017 sk

www.ijirse.com ISSN (0) 2454-9663
ISSN (P) 2454-0663

and go for the next index which corresponds to the first character of the pattern P according to the indexes

stored in index table for matching.

Reverse Colussi et.al. (2009) [1] proposed RC algorithm in which comparisons are done in specific order given
by the preprocessed phase. The time complexity of preprocessing phase is O(m2) and searching phase is O(n).
When several pattern strings need to match, using Single pattern matching has low efficiency. Corasick M.J et.al
(2008) [1] proposed many pattern matching algorithm with high efficiency to solve this problem, which is called
for short AC algorithm. In the preprocess stage, AC algorithm form several pattern strings waiting for matching,
according to their features into Tree finite state automata, and decide the next situation according to matching
characters.

Y. H. Cho et. al. (2008) [2] proposed a hash-based pattern matching co-processor where memory is used to store
the list of substrings and the state transitions. Dharmapurikar et al. (2007) [2] proposed a pattern matching
algorithm which modifies the AC algorithm to consider multiple characters at a time. Furthermore, the content
addressable memories (CAM) is also widely used for string matching because it can match the entire pattern at
once when the pattern is shifted past the CAM.

The Aho—Corasick (AC) algorithm (1975) [5] is the most popular algorithm which allows for matching multiple
string patterns. Aldwairi et al. (2005) [5] proposed a configurable string matching accelerator based on a

memory implementation of the AC FSM.

IV. EXISTING METHODOLOGY

Multiple Pattern Matching Algorithms

A. Aho-Corasick algorithm

Aho-Corasick algorithm is a variant of the Knuth-Morris-Pratt algorithm. It was the first algorithm to solve the
multiple string pattern matching problems in linear time based on automata approach. Aho-Corasick algorithm
serves as a basis for the UNIX tool fgrep. It consists of two parts. In the first part a finite state pattern matching
machine is constructed from the set of keywords and in the second part, the text string as input is applied to the
pattern matching machine. The machine gives signals whenever it finds a match for a keyword (pattern). The
pattern matching machine consists of a set of states and each state is represented by a number. The behavior of
the pattern matching machine is explained by following three functions: a goto function g, a failure function f,
and an output function output [1].

The function of goto function g is that it maps a pair consisting of a state and an input symbol into a state or
message fail. The failure function f maps a state into a state. The failure function is visited whenever the goto
function reports fail. The output function of certain states indicates that a set of keywords has been found. The
construction of Aho-Corasick automaton machine takes running time in the sum of the lengths of all keywords
linearly. This involves building of the keyword tree for the set of pattern and then converting the tree to an
automaton also called as pattern matching machine by defining the functions g (goto function), f (failure
function), and output function for naming states with the keywords matched. The memory or space requirements
of the Aho-Corasick algorithm can be very large depending on the pattern set and also the length of each pattern

in a pattern set. The matching process simply steps through the input characters one at a time and then checks if

51|Page

International Journal of Innovative Research in Science and Engineering
Vol. No.3, Issue 06, June 2017 sk

www.ijirse.com ISSN (0) 2454-9663
ISSN (P) 2454-0663

there is any matching. Each step in pattern matching machine happens in constant time. The Aho-Corasick

matcher always operates in O(n) running time [1].
The good suffix rule is used as a formula in AC algorithm.

! -|i11‘f+|/;"I —minslialiL1l.. . ml=nii—zsL
Lo syl min (S| pY o T By =

1..m—zs)))
Where, assuming shift j is the distance which P skips to right, m is the length of pattern string P, j is the current

matched character position, s is the distance between and t or the distance between X and p”.

B. Commentz-Walter algorithm

From combination of the Boyer-Moore technique with the Aho-Corasick algorithm, Commentz-Walter
presented the Commentz-Walter algorithm. It combines the filtering functions of the single pattern matching
Boyer-Moore algorithm and a suffix automaton to search for the occurrences of multiple patterns in an input
string. Commentz-Walter used a tree in his algorithm which is similar to that of Aho-Corasick’ pattern matching
machine but is created from the reversed patterns. The Commentz-Walter algorithm consists of two phases: 1)
pre-processing phase and matching phase. The pre-processing phase of algorithm is responsible for creating a
pattern tree by using the reversed pattern. The matching phase of the Commentz-Walter algorithm is the
combination of two ideas. One is from the idea Aho-Corasick’ finite automata technique and another one is
from the Boyer-Moore shifting technique (in right-to-left matching). In this algorithm a match is conducted by
scanning backwards through the input string. When the mismatch occurs, some number of characters about the
input string is known and this information is then used as an index. This index is used in a pre-computed table to
determine a distance which later helps to shifting before occuring the next match attempt [2].

For calculating the shift distance, bad character of shift left rule is used as shown in below:

(m+1

- k'
Bad char of shift e, b.cl = minym + 2
L+ 3

Where, min(m+1), (m+2), (m+3) are the minimum shift distances.

C. Wu-Manber algorithm

Wu-Manber algorithm is a simple variant of the Boyer-Moore algorithm. It uses the bad character shift rule
for multiple pattern matching. After making a UNIX based tool agrep, this algorithm was proposed in [3]. It was
used for searching many patterns in files. To improve the performance, a unique idea was created, that is, their
algorithms looks at block of text instead of a single character. So, they consider both pattern and text as blocks
of size B instead of single characters. Hash value is also known as a "message digest". The mathematical
expression:
h = H(M)

Where, H() is a one-way hash function, M is an input with arbitrary length, and h is the fixed length hash value.
D. Boyer-Moore algorithm

These are some principles to realize the BM algorithm: 1) at the beginning of matching, align pattern strings P

and text T from left to right, but the matching operation starts from right to left.

52|Page

International Journal of Innovative Research in Science and Engineering
Vol. No.3, Issue 06, June 2017 sk

www.ijirse.com ISSN (0) 2454-9663
ISSN (P) 2454-0663

2) If the character and position in P matches with the character in text T, T and P will move a position toward

left at the same time and then make comparison.

3) If the matching fails, two offset functions Badchar and Goodsuffix in preprocessing will work out the
distance in which pattern string P moves toward right, and align T and P again to match. Here are the specific
definitions of functions Badchar and Goodsuffix [4].

a) Use Badchar to move: Work out the deviant of every character in the T character collection. If character C in
T appears many times in P, the last position can be used to work out the deviant, the mathematical formula is as
follows:

=m—1)

-
— 4

Badchar(c) :| m — f. here i= MAX {__i' £ =y, 1 =

.]
=] =

(m,any cnot in By and ¢ = Bl =

P

m

. c
E. Hash Algorithm

Hash algorithm converts the input of any length to a smaller output of fixed length through the hash function,
and the output value is called the hash value. The hash value is a unique and extremely compact numerical
representation of a piece of data. This conversion is a compressed mapping, that is to say, the space occupied by
hash value is much smaller than that of the input. It's statistically impossible to produce two inputs with the
same hash value.

That is to say, given M, it's computationally difficult to find M' to meet H (M} = H{M Jwhich we called weak
collision resistant. Also, it's computationally difficult to find any pair of

M and M' to meet

HM) =H(M")

This is called as strong collision-resistant.

V. ANALYSIS AND DISCUSSION

A linear time algorithm for multiple patterns matching problem which is proposed by Aho and Corasick is
optimal in worst case but Boyer and Moore demonstrated an algorithm where they showed that it is possible to
skip a large portion of the text while searching for certain patterns. Eventually, the approach by Boyer-Moore is
working faster than linear algorithm in the average case [1].

The Commentz-Walter algorithm is the combination of idea of Boyer and Moore technique with Aho-Corasick
algorithm for multiple pattern matching problems which is greatly faster than the Aho-Corasick algorithm in
practice. It uses the idea of Boyer Moore technique to skip a large portion of the text while searching and as a
result it leads to faster than linear time algorithms in the average case [2].

Wu-Manber algorithm is the most efficient algorithm under some situations such as long random patterns, low
matching rate, and low memory requirement. The performance of Commentz-Walter algorithms declined with
increasing number of pattern in a pattern set (pattern set size). The performance of Commentz-Walter algorithm
improved approximately linearly with increasing length of the shortest keyword/ pattern in the pattern set [3].
There is another algorithm proposed by Baeza-Yates which also combines the idea of Boyer-Moore-Horspool
algorithm (which is a slight variation of the classical Boyer-Moore algorithm) with the Aho-Corasick algorithm.

Where, However, Aho-Corasick performance does not suffer great loss when comparing with others because it

53|Page

International Journal of Innovative Research in Science and Engineering
Vol. No.3, Issue 06, June 2017

www.ijirse.com

RS
ISSN (0) 2454-9665

is a linear time searching algorithm in worst case. Independent from the pattern set size, sealf\ér}i:%)54>t4i‘rj;;‘;
complexity for Aho-Corasick algorithm is O(n) but when pattern set size increase, the memory consumption
increased drastically and also the time consumption increased [4].

The Aho-Corasick and Commentz-Walter algorithms consume lots of memory because both these algorithms

use the automata data structure in the preprocessing stage where Wu-Manber algorithm consumes much less

memory than these two algorithms [5].

TABLE 1: COMPARATIVE ANALYSIS OF THE EXISTING METHODOLOGIES

Methodology/ Algorithm

Advantages

Disadvantages

1. Aho-Corasick algorithm

1) 1. As it is a native algorithm, it used
as a linear solution to many problems.

2. Use of simpler approach

1. It operates in O(n) times, so more
execution time than other approaches.

2. More no. of comparisons.

2. Commentz-Walter

algorithm

2) 1. Efficient than the existing
algorithms.
3) 2. Improved approach provides high
throughput.

1. Running time also increases with the
number of pattern increases.

2. Less efficient in space complexity.

3. Wu-Manber algorithm

4) 1. Long random patterns are used.

5) 2. Low matching rate and low
memory requirement
6)

1. 1. As worst case complexity is O(n).
It takes more number of comparisons.

2. 2. Complex mechanism

4. Boyer-Moore algorithm

1. Suitable for larger strings

2. Simple algorithm is used

1. Worst case complexity is O(n)
therefore takes more time to compare.

2. More memory consumption

5. Hash algorithm

1. Takes less execution time because
average case complexity O(n/2).

2. needs no preprocessing

1. It has a minimum length problem.
2. Therefore, not suitable for larger

strings

VI. PROPOSED METHODOLOGY

There are many multiple pattern matching algorithms but to provide the better results, a comparative study of all
of them is necessary. The comparative analysis gives us the clear idea to choose the best algorithm for pattern
matching problem. In this paper, the comparative analysis of the most widely used multiple pattern matching
algorithms is given. The proposed methodology focuses on the analysis and discussion of multi pattern
matching algorithms. There are several multi pattern matching algorithms in use. But it is always cumbersome

to select the best one.

54|Page

International Journal of Innovative Research in Science and Engineering
Vol. No.3, Issue 06, June 2017 sk

www.ijirse.com ISSN (0) 2454-9663
ISSN (P) 2454-0663

For the particularities in pattern matching algorithms and current situation of pattern matching algorithm study,

this paper proposes a new type of multi-pattern matching algorithm based on finite state automata, which is
combined with frequently matching hash values. The characteristic of the algorithm is using multi-path
searching algorithm to match in parallel. One path uses traditional FSA to do multi-pattern matching. The rest
paths, try to quickly compare with the frequently matching hash values.

This paper gives the detailed analysis of the most widely used multi pattern matching algorithms. The mostly
used algorithms discussed in this paper are: the Aho-Corasick algorithm, the Commentz-Walter algorithm, and
the Wu-Manber algorithm. Also, it proposes a new multi pattern matching algorithm which uses frequently used
groups. The comprehensive analysis and discussion also helps for the better understanding of the pattern
matching problem. Pattern matching is a basic problem in computer science.

The proposed algorithm combines hash technology and multi-pattern matching, and proposes a new type of
multi-pattern matching algorithm with automata based on frequently matching hash values. Due to combining
the advantages of fast calculation of hash function and parallel pattern matching of automata, it has significant
performance advantages in the circumstances of virus signature matching.

Also, in some practical applications where a certain rate of false negative is accepted, we can design these
automata to be simpler. The following nodes after the specific node (such as node’d’, 'i+d', 'j+d' in Figure 2) can
be removed from the automata. In this way, we can get both time and space performance advantages. This can
decrease the possibility of state space explosion of original AC algorithm. The rate of false negative depends on
the sum of all entries probabilities in Frequently Used Groups (FUG).

According to the pattern set, construct a FSA similar to AC's, where each node store the pointer (ptr_goto) to
Goto, the pointer (ptr_failure) to Failure, and a pointer (ptr_freq) to frequently used group (call FUG for short).

After applying pattern matching, a new automata based on Frequently Used Groups is shown in fig. 2.

The algorithm works as shown below

New multi pattern algorithm based on Frequently Used Groups

Step 1: Initialize
Step 2: Construction of Frequently Used Groups (FUG)
a) Get the most likely matched patterns when searching to a specific node of the automata.
Step 3: Calculate the hash values of these pattern
Step 4: store it in the FUG to which this node point to.
Step 5: Set the length of hash value be len_hash.
Step 6: Set an integer value int_depth, which represents for the
depth of current automata node.
Step 7: Insert the corresponding FUG to the node whose depth is equal to int_depth.
Step 8: Finally, we get a new automata.
Step 8: Finish

In step 1, initialize the values to the already constructed finite state automata. On basis of that different pointers

are set to different nodes. In step 2, frequently used groups are constructed. For the construction, the most likely

55|Page

International Journal of Innovative Research in Science and Engineering
Vol. No.3, Issue 06, June 2017

www.ijirse.com ISSN (0) 2454-9665
ISSN (P) 2454-0663

matched patterns are collected when searching to a specific node of the automata. In step 3, hash values of all

the patterns are calculated by applying hash function or a message digest. In step 4, hash values are stored into
FUG to which the node points to. In step 5, the length of hash value is set to len_hash.

In step 6 an integer value int_depth, which represents for the

depth of current automata node is set to current depth. Step 7 inserts the corresponding FUG to the node whose

depth is equal to int_depth. Finally, we get a new automaton as shown in fig. 2.

-—a—— - —- ——p— - —— % T~ g~ — —— " ————————— — ——— --—

Fre:tu‘_er.tl:; Uzed Group 1

Hazh_=x1

Haszh xn

Frequently UsedGroup 3

Hazh_ =zl

e

VII. POSSIBLE OUTCOMES AND RESULT

Results of the proposed algorithm can be shown in two cases:

a. Worst Case

In the worst case, we can't find any matched pattern in the input text sequence, so that the proposed algorithm is
equivalent to the original AC algorithm. It needs to compare n nodes of the automata in order, and the time

complexity is O(n), where n is the total length of the text sequence.

b. Average Case

The average case, a matched pattern can be found in the input text sequence. As the analysis above, the time
complexity of original AC algorithm is O(n). Even if we improve the original one to adapt them to circumstance
of virus signature matching, end the algorithm after a matched pattern is found. The time complexity is only up
to O(m), where m is the length of the signature.

On the basis of comparative analysis, following results can be drawn. In Aho-Corasick algorithm, if the number

of pattern is increases, the running time is also increase. The running time of Commentz-Walter algorithm is

56|Page

International Journal of Innovative Research in Science and Engineering
Vol. No.3, Issue 06, June 2017 sk

www.ijirse.com ISSN (0) 2454-9663
ISSN (P) 2454-0663

also increases with the number of pattern increases. In Wu-Manber algorithm, if the number of pattern is

increases, the running time is also increase. But the performance of this algorithm is better than the Aho-

Corasick algorithm.

VIIl. CONCLUSION

This paper combines hash technology and multi-pattern matching, and proposes a new type of multi-pattern
matching algorithm with automata based on frequently matching hash values. Due to combining the advantages
of fast calculation of hash function and parallel pattern matching of automata, it has significant performance
advantages in the circumstance of virus signature matching. The Aho-Corasick algorithm considers as a classic
solution. On the other side, Commentz-Walter algorithm seems to be the first sub-linear running time algorithm
for multiple-pattern matching problems in average case by using a sifting technique where a large portion of the
text is skipped while searching. The Wu-Manber algorithm has excellent average case performance because of

the successful use of shifting operation as a block of characters.

IX. FUTURE SCOPE

In the future improvement, the theory of machine learning can be added to make the FUG be dynamically
changing. That is, through long-term learning of the history of matching, dynamically change the entries in FUG
to adapt to complex applications. This can further improve the probability of successfully matching in the FUG,

so as to improve the overall performance of the algorithm.

X.REFERENCES

[1] Akinul Islam Jony, “Analysis of Multiple String Pattern Matching Algorithms”International Journal of
Advanced Computer Science and Information Technology (IJACSIT), Vol. 3, No. 4, ISSN: 2296-1739, pp.
344-353, August 2014.

[2] Yu He, Weitong Huang, “IAC: A Real-time Multi-pattern Matching Algorithm Based on Aho-Corsick
Algorithm”, 2013 International Conference on Computational and Information Sciences, DOI
10.1109/1CCIS.2013.203, pp. 754-757

[3] Dr. S.P Rajagopalan Dr.V.Anuradha, S. Nirmala Devi, “Index Based Multiple Pattern Matching Algorithm
Using Frequent Character Count in Patterns™, International Journal of Advanced Research in Computer
Science and Software Engineering, Volume 3, Issue 5, ISSN: 2277 128X, pp. 140-145, May 2013.

[4] Raju Bhukya, DVLN Somayajulu,” Index Multiple Pattern Matching Algorithm using DNA Sequence and
Pattern Count”, IEEE Transaction on Information Technology and Knowledge Management, Volume 4, No.
2, pp. 431-441, July-December 2011

[5] S.Nirmala Devi, Dr.S.P Rajagopalan ,,An Index Based Pattern Matching using Multithreading"
International Journal of Computer Applications (0975 — 8887) Volume 50 — No.6, July 2012

57|Page

