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ABSTRACT 

Lighthill has considered the diffraction of normal shock wave past a small bend for ,4.1  being the ratio 

of specific heats. Srivastava extended the work of Lighthill to monoatomic gases for which 
3

5
 .  In the 

present paper attempt has been made to present the results of normal shock wave diffraction for Carbon dioxide 

(CO2) gases. 
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I. INTRODUCTION 

Lighthill (1949) considered the diffraction of normal shock wave past a small bend for ,4.1  being the 

ratio of specific heats. In the present paper, the problem of Lighthill has been extended for Carbon dioxide (CO-

2) gas for which .29.1  In the first instance the equations have been obtained for general value of  and 

then the pressure distribution over the diffracted shock has been worked out for .29.1  The Mach number 

of the shock wave has been assumed to be 1.36.  Earlier Srivastava (1963) and Srivastava (2016) have treated 

the analogous problem for 
3

5
 for the pressure distribution over the wall and the pressure distribution over 

the diffracted shock respectively.  It may be mentioned here that Srivastava (2011) has obtained the vorticity 

distribution over the diffracted shock for monoatomic gases.  Reference may be made to the book by Srivastava 

(1994) for detailed reading. 

 

II.MATHEMATICAL FORMULATION 

Let the velocity, pressure, density, sound speed behind the shock wave before it has crossed the bend be 

1111  , ,  , apq   and ahead of the shock wave be 
000   ,  ,  ,0 ap  .  Then applying the principle of conservation 

of mass, momentum and energy for general value of   ( being the ratio of specific heats) 
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U being the velocity of shock wave, Mach number of the shock 
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11  , p  are given by (5) and (6)   - (7) 

The wedge is made up of two walls having a small angle  between them.  After the shock has suffered 

diffraction, the flow is two dimensional behind the shock wave.  Let 
222   ,  , pq


 and 

2S  be the velocity 

vector, pressure, density and entropy at any point.  We take the origin and Y axis lying on the leading edge of 

the wedge and X axis on the original wall produced.   

If 



 2q

tDt

D 
 signifies time rate change for a given fluid element, then the equation of conservation of 

mass, momentum and energy can be written as  

 0 div 22
2  q

Dt

D 



        - (8) 
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Now we introduce the following transformations 
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We assume that 
222  , , pq


 differ by small quantities from the values   111   ,  ,0 , pq  which they had before 

diffraction, then using the equations (8), (9), (10) and (11), (12), (13), (14) we obtain a single second order 

partial differential equation in p. This equation is 
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The characteristics of the differential equation (15) are tangents to the unit circle ,122  yx  signifying that 

the disturbed region is enclosed by the arc of unit circle, the diffracted shock and the wedge surface. 

The requirement of the problem is the determination of pressure distribution over the diffracted shock. 

The position of the straight portion of the shock wave in x, y coordinates is given by ,kx   

where
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M .Lighthill (1949) using 

Busemann transformation and complex variable techniques, obtained a function which satisfies all the boundary 

conditions.  The function is given by 
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In the final 1z -plane, the imaginary part on the left hand side of (17) gives the pressure derivative which 

determines the pressure distribution over the diffracted shock. If one does that, then the expression for pressure 

derivative is given by 

 

   
  
     1 1

11

1 1

2

1

2

2
1

1

012
1

2

1
1 





















xx

x

xx
D

x

C

x

p




   - (18) 

In (18), all the quantities are functions of the Mach number of the shock wave M except 1x  which runs from 1 

to  on the diffracted shock in the transformed plane and is connected to y in the physical plane through the 

relation 
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When ,11 x 0
k

y
 (wall surface), when 1x , 1

k

y
 (point of intersection of shock and unit circle).  

 

III. NUMERICAL SOLUTION: 

The pressure distribution over the diffracted shock is obtained by integrating equation (18). The pressure pis 

zero at 1x i.e. at 1
k

y
 (the point ofintersection of shock wave and unit circle) and so pressure at other 

points could be known by integrating in intervals. The points chosen over the diffracted shock are  
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The equations (18) and (19) have been used to get the results.  The following table gives the results after 

integration. The table is for 
k

y

versus 

k

p
  M is 1.36 and  

Table-1 

k
y


 0 0.2 0.4 0.6 0.8 1 

k

p
  4.17 4.09 3.71 3.08 2.11 0 

 

The table shows that 
k

p
  is maximum at 0

k
y

i.e. at the point of intersection of the wall and shock. The 

value of 
k

p
  falls from there and attain the value zero at 1

k
y

 i.e. at the point of intersection of shock 

and unit circle.  Physically this is consistent.   

 

From the papers of Sakurai et al (2002) and Srivastava (2016) is could be seen that the value of 
k

p
  is higher 

in the present case than those of earlier cases.  In the interval of interest , 
k

p
  for 

 is lower than that for 
3

5
  and 

k

p
  is lower for 

3

5
  than that for  

 

IV. CONCLUSION 

Diffraction of shock waves is very important aspect of aeronautical engineering.  Particularly pressure variation 

over the diffracted shock is helpful in design work in aeronautics. 
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