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ABSTRACT

Lighthill has considered the diffraction of normal shock wave past a small bend for y = 1.4, y being the ratio

of specific heats. Srivastava extended the work of Lighthill to monoatomic gases for which y = 5 In the

present paper attempt has been made to present the results of normal shock wave diffraction for Carbon dioxide
(CO,) gases.
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I. INTRODUCTION

Lighthill (1949) considered the diffraction of normal shock wave past a small bend for » =1.4, y being the
ratio of specific heats. In the present paper, the problem of Lighthill has been extended for Carbon dioxide (CO-
») gas for which » =1.29. In the first instance the equations have been obtained for general value of y and
then the pressure distribution over the diffracted shock has been worked out for ¥ =1.29. The Mach number

of the shock wave has been assumed to be 1.36. Earlier Srivastava (1963) and Srivastava (2016) have treated
5 S o
the analogous problem for y = gfor the pressure distribution over the wall and the pressure distribution over

the diffracted shock respectively. It may be mentioned here that Srivastava (2011) has obtained the vorticity
distribution over the diffracted shock for monoatomic gases. Reference may be made to the book by Srivastava
(1994) for detailed reading.

ILMATHEMATICAL FORMULATION

Let the velocity, pressure, density, sound speed behind the shock wave before it has crossed the bend be
0,, P» Py, @ and ahead of the shock wave be 0, p,, p,, &,. Then applying the principle of conservation
of mass, momentum and energy for general value of y (y being the ratio of specific heats)
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U being the velocity of shock wave, Mach number of the shock M = 2' a, = Y Po
8 Po
For ¥ =1.29, we have
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The wedge is made up of two walls having a small angle & between them. After the shock has suffered
diffraction, the flow is two dimensional behind the shock wave. Let (,, p,, ©, and S, be the velocity

vector, pressure, density and entropy at any point. We take the origin and Y axis lying on the leading edge of

the wedge and X axis on the original wall produced.
D o . P . . . .
If Et = E +0, - V signifies time rate change for a given fluid element, then the equation of conservation of

mass, momentum and energy can be written as

D,Otz +p,divg, =0 -(8)
%+in2 =0 -(9)
Dt p,
DS,

=0 - (10
Dt (10)

Now we introduce the following transformations
X —at
at _
at

-(11)
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0,

P — P =p - (19)

a d; Py

We assume that q,, p,, p, differ by small quantities from the values (ql, 0), p,, o, which they had before
diffraction, then using the equations (8), (9), (10) and (11), (12), (13), (14) we obtain a single second order

partial differential equation in p. This equation is

Vzp:(x§+y%+lj(x%+y%w - (15)

The characteristics of the differential equation (15) are tangents to the unit circle x? + y2 =1, signifying that

the disturbed region is enclosed by the arc of unit circle, the diffracted shock and the wedge surface.

The requirement of the problem is the determination of pressure distribution over the diffracted shock.

The position of the straight portion of the shock wave in X, y coordinates is given by X =K,

U-
where k =—ql.The coordinates of the corner is (— Ml,O) where | M, s .Lighthill (1949) using
& &

Busemann transformation and complex variable techniques, obtained a function which satisfies all the boundary

conditions. The function is given by

w(z) =P i P _ ~ Copl %I -(17)
oY, OX, (le —1)% la—i (Zl —1)%“,3—i (Zl _1)%J(21 _Xo)
Z, =% +1y,

In the final Z, -plane, the imaginary part on the left hand side of (17) gives the pressure derivative which

determines the pressure distribution over the diffracted shock. If one does that, then the expression for pressure

derivative is given by

o __C5 | 1 (a+ B)x, —1)2 _
% (g -1 {D <X1—Xo)} o™+ (1)l + (x, -1 &

In (18), all the quantities are functions of the Mach number of the shock wave M except X; which runs from 1

to oo on the diffracted shock in the transformed plane and is connected to y in the physical plane through the

relation

%
l:(xl‘lj LK =1-k? - (19)

k" (x +1
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When X, =1, y =0 (wall surface), when X, — oo, y =1 (point of intersection of shock and unit circle).
1 k( 1 kr

111. NUMERICAL SOLUTION:

The pressure distribution over the diffracted shock is obtained by integrating equation (18). The pressure pis

y

zero at X, =ooi.e. at P =1 (the point ofintersection of shock wave and unit circle) and so pressure at other

points could be known by integrating in intervals. The points chosen over the diffracted shock are

%FO’ %=0-2, %,=0.4, %:o.a, V=08

The equations (18) and (19) have been used to get the results. The following table gives the results after

integration. The table is for %, Versus —% Mis1.36 and ¥ = 1.29.

Table-1
Vk’ 0 0.2 0.4 06 08 1
_P V417 | a00 | 371 | 308 | 211 0
ko
p

The table shows that — 6 is maximum at y K= 0O i.e. at the point of intersection of the wall and shock. The

P

value of — 6 falls from there and attain the value zero at y k'~ 1 i.e. at the point of intersection of shock

and unit circle. Physically this is consistent.

From the papers of Sakurai et al (2002) and Srivastava (2016) is could be seen that the value of — % is higher

in the present case than those of earlier cases. In the interval of interest( % =0 to % =1 ) — % for

¥ = 1.4 is lower than that for :g and —% is lower for y :g than that for ¥ = 1.29.

1V. CONCLUSION
Diffraction of shock waves is very important aspect of aeronautical engineering. Particularly pressure variation

over the diffracted shock is helpful in design work in aeronautics.
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