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ABSTRACT 

Production planning and scheduling are usually performed in a hierarchical manner, thus generating unfeasibility 

conflicts when comes to implementation. Moreover, solving these problems simultaneously in complex 

manufacturing systems is very challenging in production management. Production planning is first performed at the 

tactical decision level and, the different jobs are then supposed to be scheduled at the operational decision level. 

Therefore, the information about capacity planned at the tactical level is in aggregate manner, thus not 

guaranteeing that scheduling constraints are respected. Thereby, the production plans may be unfeasible. 

 An integrated approach for guaranteeing consistency to some extent between decisions taken at tactical and 

operational levels of production management was presented, thus avoiding the shortcomings of traditional 

approaches in which decisions are taken sequentially. Integrated problem are solved by using the exact capacity 

constraint from a standard scheduling problem to the lot sizing problem. 

 However this combinatorial optimization problem can be solved by using soft computing techniques in reasonable 

time. In the present work we have applied Binary Particle Swarm optimization (BPSO) technique to the Single item 

single level, multi-level and Multi item Lot sizing problems with and without applying the Scheduling constraint. We 

have tested the BPSO technique to the different types and sizes of problems by applying scheduling constraint. The 

obtained results are compared with Lot sizing problems without constraint and it is concluded that in all instances 

the results are improved compared to simple lot sizing problems.  
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I.  INTRODUCTION 

Today’s business environment has become highly competitive. Manufacturing firms have started recognizing the 

importance of manufacturing strategy in their businesses. Firms are increasingly facing external pressures to 

improve customer response time, increase product offerings, manage demand variability and be price competitive. In 

order to meet these challenges, firms often find themselves in situations with critical shortages of some products and 
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excess inventories of other products. This raises the issue of finding the right balance between cutting costs and 

maintaining customer responsiveness. Previously, production specialists used multiple and sometimes contradictory 

or confusing databases, data gathered from machine operators, and past experience to gauge what was needed to 

meet production goals. Problems always take place on shop floor when generating MRP and production schedule are 

separately taken into account since both MRP and schedule aim for different objectives which are not synchronized. 

MRP is computer software based production planning and inventory control system used to ensure that all materials 

required are ready for production and requested products are available for delivery to customers with the lowest 

possible level of inventory. Using conventional MRP and classic shop floor scheduling separately cannot solve the 

problem. Integration of inventory control and scheduling is one of the solutions.  

II. MATHEMATICAL FORMULA 

1.  Mathematical formulation to the Single level Lot sizing Problem (SISL) 

The incapacitated single item no shortages allowed and single level lot sizing model is the simplest model in the 

inventory lot sizing problems. Lot sizing formulation for this kind of lot sizing problem takes the following form   

 

Where  

n=number of periods, A=ordering/setup cost per period, c=holding cost per unit per period, Ri=net requirement for 

period i, Qi=Order quantity for period i, Ii=projected inventory balance for period i, Xi=1 if an order is placed in 

period i, Xi=0 otherwise. 
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2.  Mathematical formulation to the Multi level Lot sizing Problem (MLLS) 
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Necessary notations: 

Γ (i): set of immediate successors of items i; Γ 
-1

(i): set of immediate predecessors of items i; cij : quantity of item i 

required to produce one unit of items j; Di,t : external requirement for items i in period t; hi: holding cost for items i 

(Following small instance standard); Ii,0 : initial inventory of product i; Si : setup cost for items i (Following small 

instance standard); T: total number of periods.  

Decision and auxiliary variables: 

di,t : total requirement for item i in period t; Ii,t : Inventory level of item i at the end of period t; Xi,t: delivered 

quantity of items i at the beginning of the period t; Yi,t: binary variable which indicates if an item i is produced in 

period t, (yi,t = 1 ) or not (yi,t = 0 ). 

3.  Integrated formulation of planning and scheduling 

The problem is formulated as  
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The objective function in the above problem is the minimization of sum of the Inventory surplus, backlog, and 

production cost of the products to be planned. (1) is the standard inventory balance equation. Constraints 2, 3, 4 

presents that production items, inventory surplus, backlog quantities are always positive. Constraint 5 gives the 

conjunctive constraint relationship among the operation on the machines. (6) Gives that starting times of operation 

Oijt are always positive. Constraints 7 give disjunctive constraints relations among the operations. Constraints 8 & 9 

state that the last operations of the Jit must be completed in period t and not before. Constraint 7 replaced with 

necessary conditions which does not involve Disjunctive constraints. 

 

 

III. IMPLEMENTATION OF BPSO TO INTEGRATED PROBLEM 

1. Binary Particle Swarm Optimization Algorithm (BPSO) 

Pseudo code of the general PSO is given as 

2.  

3.  

4.  

5.  

6.  

7.  

8.  

9.  

10.  

11.  

 

The basic elements of PSO algorithm is summarized as follows: 

Particle: is a candidate solution i in swarm at iteration k. The i
th

 particle of the swarm is represented by a d-

dimensional vector and can be defined as Xi
k 

=[X
k
i1, X

k
i2, X

k
i3…. X

k
id], where x’s are the optimized parameters and 

X
k
id is the position of the i

th
 particle with respect to d

th
 dimension. In other words, it is the value d

th
 optimized 

parameter in the i
th

 candidate solution. 

Population: pop
k
 is the set of n particles in the swarm at iteration k, i.e., pop

k
=[ X1

k
, X2

k
, X3

k
……… Xn

k
]. 
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Begin 

Step 1: Initialization 

 Initialize swarm, including swarm size, each particle’s position 

and velocity; 

 Evaluate the each particle fitness; 

 Initialize gbestposition with particle with the lowest fitness in the 

swarm; 

 Initialize pbest position with a copy of particle itself; 

 Give initial value: Wmax,Wmin,C1,C2and generation=0; 

Step 2: Computation 

While (the maximum of generation is not met) 

Do { 

Generation++; 

Generate next swarm by equation (1a) and (1b); 

Evaluate Swarm { 

Find new gbest and pbest; 

Update gbestof the swarm and pbest of each particle; 

} 

} 

Step 3: Output optimization results 

End 
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Particle velocity: Vi
k
 is the velocity of particle i at iteration k. It can be described as Vi

k
 = [V

k
i1, 

V
k
i2,V

k
i3….V

k
id],where Vid

k
 is the velocity with respect to d

th
  dimension. 

Particle best: PBi
k
  is the best value of the particle i obtained until iteration k. The best position associated with the 

best fitness value of the particle i obtained so far is called particle best and defined as PBi
k
 = [pb

k
i1, 

pb
k
i2,pb

k
i3….pb

k
id], with the fitness function f(PBi

k
). 

Global best: GBi
k
  is the best position among all particles in the swarm, which is achieved so far and can be 

expressed as GBi
k
 = [gb

k
i1, gb

k
i2,gb

k
i3….gb

k
id],  with the fitness function f(GBi

k
).  

Termination criterion: it is a condition that the search process will be terminated. In this study, search is 

terminated when the number of iteration reaches a predetermined value, called maximum number of iteration. 

The complete computational flow of the binary PSO algorithm is given below: 

Step 1: Initialization 

a) Set k=0, n=twice the number of dimensions 

b) Generate n particles randomly as, {Xi
0
,i=0,1,2,……n},where Xi

0 
=[X

0
i1, X

0
i2, X

0
i3…. X

0
id]. 

c) Generate the initial velocities of all particles randomly, {Vi
0
,i=0,1,2,……n}, where Vi

0 
=[v

0
i1, v

0
i2, v

0
i3….           

v
0
id]. v

0
id is randomly generated with vid=Vmin+( Vmax - Vmin)*rand(). 

d) Evaluate each particle in the swarm using the objective function, f(Xi
0
).  

e) For each particle i in the swarm, set PBi
0
= Xi

0
,where PBi

0
 = [pb

0
i1= X

0
i1, pb

0
i2= X

0
i2, pb

0
i3= X

0
i3….. pb

0
id= 

X
0
id along with its best fitness value, fi

pbest
(PBi

0
,i=1,2,3….n).  

f) Set the global best to, , fi
gbest

(GB
0
)=min{ fi

pbest
(PBi

0
,i=1,2,3….n)} with GB

0
=[gb1, gb2,… gbd] 

Step 2: Update iteration counter 

  k=k+1 

Step 3: Update velocity by using the piece-wise linear function 

h  

 C1 and C2 are social and cognitive parameters and r1 and r2 uniform random numbers between (0, 1). 

Step 4: Update dimension (position) by using the sigmoid function 

 Xid
k
={1, if U(0,1)<sigmoid (v

k
id) 

            0, otherwise 

Step 5: Update particle best  
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 Each particle is evaluated again with respect to its updated position to see if particle best will change. That 

is, 

If  fi
k
(Xi

k
,i=0,1,2,……n) <  fi

pbest
(PBi

k-1
,i=0,1,2,……n) 

then 

      fi
pbest

(PBi
k
,i=0,1,2,……n) = fi

k
(Xi

k
,i=0,1,2,……n) 

      else 

      fi
pbest

(PBi
k
,i=0,1,2,……n) = fi

pbest
(PBi

k-1
,i=0,1,2,……n) 

Step 6: Update global best 

f
gbest

(GB
k
) = min { fi

pbest
(PBi

k
,i=1,2,……n)} 

if  f
gbest

(GB
k
)< f

gbest
(GB

k-1
), then 

f
gbest

(GB
k
) = f

gbest
(GB

k
) 

else f
gbest

(GB
k
) = f

gbest
(GB

k-1
) 

Step 7: Stopping Criterion 

 If the number of iteration exceeds the maximum number iteration, then stop, otherwise go to step 2. 

 

IV.  RESULT 

1. Single item Multi level Problem 

1

2 3

7654
 

Figure 5.3 BOM Structure of 7×6 problem 
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Table 1.1 Demand of products and cost involved in (7×6) problem 

Period 1 2 3 4 5 6 

Problem76 25 20 15 10 20 35 

Item no 1 2 3 4 5 6 7 

S.C 400 500 1000 300 200 400 100 

H.C 12 0.6 1 0.04 0.03 0.04 0.04 

Table 1.2 Demand of products for three different problems 

period 1 2 3 4 5 6 7 8 9 10 11 12 

Demand 

25×12 

15 5 15 110 65 165 125 25 90 15 140 115 

Demand 

40×12 

10 100 10 130 115 150 70 10 65 70 165 25 

Demand 

50×12 

15 5 15 120 65 155 125 25 95 15 135 115 

Comparison of results with and without scheduling constraint tested at different iterations 

Table 1.3 SIML problem solution with four different sizes at different iterations 

iteration 

No 

simple 

50×12 

Integrated 

50×12 

simple 

40×12 

Integrated 

40×12 

simple 

25×12 

Integrated 

25×12 

Simple 

7×6 

Integrated 

7×6 

5 256564.83 240840 367011.844 366131.8438 306744.94 299342.5 5235.25 5190 

25 244064.84 220425 333017.781 332167.7813 260425.02 229615 4323.5 4285.27 

50 221292.95 214097.5 276022.781 274832.7813 217487.42 187560 3500 3465.15 

100 208054.88 208940 251291.906 250011.9063 193371.08 166397.5 2965.32 2846.58 

500 204272.45 197120 233231.188 231861.1875 166823.33 158520 2833.63 2742.88 

1000 200755.48 196262.5 221354.688 220344.6875 162807.89 152022.5 2795.34 2731.85 

2000 194767.62 193652 218257.954 217965.7056 159652 150712.24 

5000 193546.38 192758 214125.36 213924.1637 159242.85 150215.32 
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Figure 1.1 Convergence of Four SIML problems solutions at different iterations 

2. Multi item level Problem 

Table 1.4 MIML problem solution with three different sizes at different iterations 

iteration 

no 

Simple 

39×12 

Integrated 

39×12 

Simple 

15×12 

Integrated 

15×12 

Simple 

25×12 

Integrated 

25×12 

5 422388.1563 412894.2812 267876.5625 252053.1563 350988.8125 336092.2813 

25 376876.25 365135.0937 204949.6563 194649.6563 293958.2188 283658.2188 

50 340013.4688 328273.875 163244.7031 156844.7031 236183.5313 222883.5313 

100 280418.8438 267891.5937 124069.1641 123669.1641 194280.3594 189580.3594 

200 255216.375 244539.421 121145.0547 120225.8984 181030.5625 175430.5625 

500 244271.6406 231291.8906 113352.3047 112148.213 170112.3906 166256.7813 

1000 230098.312 223192.4062 103500.2031 101742.2361 156994.7188 154257.6875 

2000 222510 213361.4687 100472.1862 94232.80469 155365.7031 150367.7969 

 

Figure 5.8 Convergence of three MIML problems solutions at different iterations 
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Figure 5.9 Comparison of three MIML problems solutions at different iterations 

 

Figure 5.6 Convergence of three SIML problems solutions at different Swarm sizes 

 

Figure 5.10 Convergence of three MIML problems solutions at different Swarm sizes 
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V. CONCLUSIONS 

To the best of knowledge no work related to the integration problem by using BPSO technique has been published 

so far in the contemporary literature. BPSO technique have been successfully applied to integrated model and tested 

for different lot sizing problems such as single item single level, single item multi-level and multi item problems 

with three different product structures. In all the problem instances we found the improvement in inventory cost by 

introducing the scheduling constraint in the lot sizing problems. We found that problem solutions are converging at 

higher number of iterations and Swarm sizes. 

Computational experience of BPSO algorithm to the combinatorial optimization problems in manufacturing decision 

making problems is good and its implementation to manufacturing problems is easy as it is having few number of 

control parameters in algorithms compared to other evolutionary algorithms. 
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