International Journal of Advance Research in Science and Engineering

Vol. No.6, Issue No. 04, April 2017 www.ijarse.com

SYNTHESIS, CHARACTERIZATION, IN VIVO CYTOTOXICITY AND IMMOBILIZATION OF BGALACTOSIDASE ON POLY(O-TOLUIDINE)TITANIUM DIOXIDE NANOCOMPOSITE

Mohd Shoeb Khan¹, Farha Firdaus², Mohammad Shakir³

^{1,3}Department of Chemistry, Aligarh Muslim University, Aligarh (India)
²Chemistry Section, Women's College of Science, Aligarh Muslim University, Aligarh

ABSTRACT

The nanocomposites of poly(o-toluidine)-titanium dioxide (POT/TiO₂) have been synthesized by in situ chemical oxidative polymerization of o-toluidine (monomer). The POT/TiO₂ nanocomposites are obtained by the addition of TiO₂ nanoparticles (NPs) in the POT. Subsequently, β -Galactosidase (BGAL) has been immobilized on POT/TiO₂. The nanocomposite POT/TiO₂ nanocomposites were characterized by FTIR, SEM and TGA/DTA. The nano size of pure POT and its POT/TiO₂ nanocomposites were confirmed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies. The particle size was found to be in the range of ~ 25-40 nm. The characterization results confirmed that there is a strong synergistic interaction among POT and TiO₂ NPs. The results showed that the POT/TiO₂ nanocomposites are thermally more stable as compared to pristine POT. The loading efficiency of POT/TiO₂ nanocomposites is 84.51%. The immobilized POT/TiO₂ nanocomposites enhance its stability, recycling efficiency and residual activity, an ideal candidate for industrial applications. The in vivo cytotoxicity studies of POT and POT/TiO₂ have also been estimated against brine shrimp.

Keywords: Thermogravimetric analysis, Composites, transmission electron microscopy, X-ray diffraction.