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I. INTRODUCTION

Let be aareal Hilbert space and let  be a nonempty convex subset of a real Hilbert space

Let be a mapping.

The following Definitions have been studied widely and deeply by many authors; see, e.g., [1-21] for more details.

Definition 1.1. The mapping 7 is said to be nonexpansive if

Tx—Tyll = llx—vwll, ¥x.¥v €C,
Definition 1.2. The mapping 7' is said to be pseudocontractive if
(Tx—Ty.x—y) = llx—vll? vx.v eC.

Definition 1.3. Let ¥ denote the set of all the nonnegative integers and let £ be a normed linear space. By a double

sequence in E is meant by function £ : M x M — E defined by f (n.m} = x,,,, € E. The double sequence {x .} is
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said to converges stongly to =" if any = = 0 there exist integer N.M = O suchthat ¥n = N. m = M, we have that
Ypm— x| <& If ¥or = Nand m.t = M wehavethat |r,. — x. .|| = &, then the double sequence is

said to be Cauchy. Furthermore, if for each fixed #, x,, . — x4 as — == and then x; — x” as# — =, then
Epm— X aST.m — o,

In the last few years or so, Several iteration process have been established for the constructive approximation of
solution to several classes of (nonlinear) operator equations and several convergence results established using these
iterative processes (see, e.g [1-21] and the reference cited therein). Most of these convergence results for the
iterative solution of nonlinear operator equations or approximation of fixed points of nonlinear maps have used
iteration process of the Mann , Ishikawa and Hybrid S- types.

The concept of Mann-type double —sequence iteration process introduced by C. Moore and he prove that it
converges strongly to a fixed point of a continuous pseudocontraction which maps a bounded closed convex
nonempty subset of a real Hilbert space into itself.

In this paper, we prove the same result for double —sequence of Hybrid S-iterative scheme.

I1. MAIN RESULTS
Theorem 2.1. Let € be a bounded closed convex nonempty subset of a real Hilbert space H, and T: £ — C be a
continuous pseudocontractive map . Let 5: £ — £ be nonexpansive mapping satisfying that llx — 5wl = [[5x — 5y
forall x.v € Cand (8.}, .0. Lastize © (0,10 be real sequence satisfying the following condition :

1) ]JI_I:l &; = 1( monotonically);

-

o

2) lm (T—)=o0forall0=<j=k;
3 lm g, =0,
4) F By ==

-
wE

For an arbitrary but fixed u € €, and foreach ¥ = 0, define To: € — Cby Tox = (1 — e lu+ e, Txr.vx & C.

Then, the double sequence {r‘w

+20n=p 9€Nerated from an arbitrary x; € € by
J.'--y._« = ET"- 7
Van = 1 —Bplxp, + BnTaxpn, k.nz=0

Converges strongly to a fixed point x% of T in C.
Proof: Consider

(Tox—Tev.x—v = lTe = Tyr.x — v = eplle—l*

K H H -
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Sothat ¥k =0, Ty is continuous and strongly pseudocontractive. Also, £ is invariant under T . ¥ & by convexity.

Hence, T has a unique fixed point =3 € C.% & = 0. It thus suffices to prove the following:

i. Foreachfixed ¥k =0, x;, = xL el asn — =
ii. xh—=x. e Cask— =;
iii.  xL e F(T).

Now, Let b = diam Candy; = (1 —a;) € (0,117 k. Then

xines — x3l° = Iyin — x3l7 = 1Sy — =il
= [y n— il
= [[(1 = Bodopn + BuTexgn — xil
= |-r:c:'!_ l’:"_- _.g:'! {-r:c:'! _T:c-r:c:'!:”-
= |-r:c:'!_ -r;clz _E.En{rkn_rk-rkn' Xpnm — .I':.?' +.S:'!: .I';_.n—T;_..I';m :
= xgn— 23l = 268,01 — ) xzn — w3l + 528,2
= (1 - 25 Bl — w3l + 828,
If we set
Brn = |-I':_w—l'?_- v Opa = 21Bn, E;_.:,.=b'3u.:

Then we have

So that observing that
oxn = 0(8xn) ]:fﬁl_iﬁ:;n:[' and ZO'k_nZO

We then have that &; ;, — @ asn — ==, So the part (i) is proved.

Now,

b= Tkl =l = a7k — e T (L — el
= | (=) - (2224
= .[1:*‘] gl + M)
= 25 (%)

So that %

lim [lxz— Txzll=0
k—m
And hence , {x3} is an approximate fixed point sequence for T. Also, supposing that = is a fixed point of T, then
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Now, forall 0 = j = &,
=i = G- xxi - )
= (Tyxi = Tox}, xi = x))
= a; - o M x5 — wib+ e Ta— oTx}, xi—x})

= Lep—ap lw xp— a0+ Lag — e WTx}, o —x7) +apdTag —Txp, xp— x7)

= |Gy — o .I'E—,r;-",';rl +lull )+ e .I'—.I'F
So that
(1-adllxi— x5l = [ae — aglllxz— 7 I+ )
And hence,
. . . o { o — o
im |xi— x|=2blim |——| =0
:Z.__:—>;: - Z:_‘_:_;.-_-_ h 1—&-:\;.

Thus, {3} is a Cauchy sequence, and hence there exists x: € C such that x; — x> as k — =.

So the part (ii) is proved.

By continuity, Tx. — TxLas k — =. But x% — TxL — 0 as k — =. Hence, x5 £ F(T.

This completes the proof.

Corollary 2.2: Let C be a bounded closed convex nonempty subset of a real Hilbert space H,and T: € — C be a
continuous pseudocontractive map . Let 5: £ — £ be nonexpansive mapping satisfying that llx — 5wl = [l5x — 5y
forall x.v € Cand {8, }n20.leiez = (0.1) be real sequence satisfying the following condition :

1) lim «; = 1( monotonically);
A=k

2) Jlim Iki| =0 forall0 = =k
fj—sm t TER
R—+m

4) ? .'3',,, = @,

—]
R

For an arbitrary but fixed u € £, and for each & = 0, define T;.: £ — C by Ty x = &, Tx . ¥ x € £. Then, the double

sequence {r; v. generated from an arbitrary x; 5 € C by

Tinetr = S¥in

En+1l A HM

i R’ — »
Ven = M = Bplugy + BnTexgn, konzl

i

Converges strongly to a fixed point % of T in L.
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Proof: This follows from Theorem 2.1 on setting 4 = 0 & €.

Corollary 2.3: In Theorem 2.1, Let T be a non expansive map. Then the same conclusion is obtained.

Proof: Observe that every non expansive map is continuous pseudocontraction.

Remark 2.5: If we put & = I'in Theorem 2.1 then we get the result of C. Moore (see [17])

Remark 2.4: Prototypes of the sequence {z;}are: ¥ & =0,

i
a; = exp|—
L

X
=

1)
—

1 -] _, 1
K+ k1) T

;
. =log.le — - - -
" o \ 1'3'5.“- |:.'{ Lm L 1.-'
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