Vol. No.6, Issue No. 03, March 2017

www.ijarse.com

INNOVATION IN MATHEMATICS EDUCATION

Ms. Harpreet Kaur Sandhu¹, Mr. Avi Grover²

¹Mathematics, Akal Academy, Sultanpur Lodhi, Punjab, India ²Mathematics, R.S.D College, Firozpur, Punjab, India

ABSTRACT

The proposed Research Paper will reflect about the effective & concrete learning of mathematics by the use of self devised innovative techniques, worksheets, projects, experiments & teaching aids. Presently, educational approaches have resulted in a mismatch between what is taught to the students and what a student really needs. As such, many institutions are moving towards problem-based learning as a solution to produce students who are creative, can think critically, analytically and are able to solve problems. As Mathematics is one of the pillars of Basic Sciences, one of the solutions is to remove the mathematics phobia that has been cribbing into the minds of the students. We focus on the innovative methods of teaching and attracting students to this subject. Some pedagogic tools with which a teacher should be equipped have been mentioned.

Keywords: Innovation, Learning, Mathematics, Teaching, Science, Students.

I. INTRODUCTION

Mathematics is the study of topics such as quantity (numbers), structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope and definition of mathematics. Mathematics can, broadly speaking, be subdivided into the study of quantity, structure, space, and change (i.e. arithmetic, algebra, geometry, and analysis).

Mathematics, being an important subject and occupying a central position since the ancient period till date, has not been of interest to many students. The reason is mainly because there is aspiration but it is hard to achieve. Being highly abstract, it is concerned with ideas, which are interrelated, and with the manipulation of symbols Teaching of mathematics is not only concerned with the computational knowhow of the subject but is also concerned with the selection of the mathematical content and communication leading to its understanding and application of Mathematics. Mathematics has a role to play in many different fields: innovations in medicine, digital encryption, communication technology, modelling real life phenomena, predicting disasters, organization of enterprises, business and transport to name a few.

In primary grades, many children demonstrate vivid interest in science and mathematics, but their attitudes decline in the middle grades. Interest levels vary by topic and by gender, but the general pattern is quite similar for mathematics and most of the sciences, and the decline occurs in most countries that have attained a certain level of wealth. The lack of interest in science and mathematics has been on the educational and political agenda for a long time for various reasons, such as the need for a scientifically literate public; the need for employees with a STEM (Science, Technology, Engineering and Mathematics) background; and the need of science itself

Vol. No.6, Issue No. 03, March 2017

www.ijarse.com

IJARSE
ISSN (O) 2319 - 8354
ISSN (P) 2319 - 8346

to gain public. Many educational innovations, including context-based teaching, inquiry-based teaching, and ICT usage, have been proposed, both in science and mathematics education, to foster positive attitudes, but there is little systematic evidence about which educational approaches are effective to promote interest, attitude, and motivation.

II. TRADITIONAL TEACHING METHOD - An evaluation

Mathematics is an important subject, but few understand what the discipline is about. For many, mathematics is a collection of rules to be mastered, arithmetic computations, mysterious algebraic equations, and geometric proofs. If most people were asked to recall how they were taught mathematics they would most likely recall engaging in rote memorization of mathematical concepts as the teacher demonstrated the procedures to solve certain problems on the board. Following the lesson the teacher would give a "drill and kill" homework assignment over the same concepts that were covered in class. The next day would consist of the same procedures but over a different concept. This method of mathematics instruction would continue on day after day. Over the past several years, however, debate has taken place over how to effectively teach math and whether the traditional method is as effective as it once was. Traditional methods of math instruction do not allow for much questioning, investigating or individual development of understanding.

There are number of problems in geometry instruction at secondary school in India. For example, the approach that is used to teach geometry topics is very theoretical, and many abstract concepts and formulas are introduced without paying much attention on aspects such as logic, reasoning, and understanding. The topics that are taught seem very far from pupil's daily life. Therefore most pupils think that geometry is very difficult to learn. Pupils are passive throughout the lesson; 'chalk and talk' is preferred teaching style; emphasis on factual knowledge; questions require only single words, often provided in chorus; lack of learning questioning; only correct answers are accepted and acted upon; whole-class activities of writing/there is no hands work is carried out.

III. NEED FOR INNOVATIVE PRACTICES IN TEACHING MATHEMATICS

In view of the foregoing aims of teaching mathematics I realize that more focus should be laid in class room to the higher level of objectives underlying the mathematics subject, like critical thinking, analytical thinking, logical reasoning, decision-making, problem-solving. Such objectives are difficult to be achieved only through verbal and mechanical methods that are usually used in the class of mathematics. As one of the verbal methods of instruction give all importance to speech and texts, to the book and to the teacher who used to be simply satisfied with giving the mathematical rules to pupils and having them memorize it, e.g. The rule of signs and formulas in algebra, students memorize this and remember it! Another verbal method involves explanation. Teachers who use this method assume that the mental structure of the child is same as the adult's. This method leads to series of explanations and students at the initial steps of logical explanations trying to understand and grasp but slowly the gap is created between the explanations transmitted by teacher and received by students which lead to the poor understanding on part of students and they develop a fear of the subject - Math phobia. The Education Commission (1964-66) points out that "In the teaching of Mathematics emphasis should be more on the understanding of basic principles than on the mechanical teaching of mathematical computations".

Vol. No.6, Issue No. 03, March 2017

www.ijarse.com

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

IV. INNOVATIONS IN TEACHING MATHEMATICS

Over the past decades many teaching approaches have been proposed to foster positive attitudes toward science and mathematics. Although each approach has its own unique features, which could be characterized on many dimensions, a few broad categories tend to be distinguished in research as well as in public debate. To categorize the studies we encountered the following types of interventions in our study

4.1 CONTEXT-BASED TEACHING

Many curriculum reforms have focused on the use of contexts and applications of science and mathematics. Although the intensity and the role of context use vary across implementations, one aim of all context-based curricula is that students will experience the relevance and applicability of the science content in society and in their personal life worlds (Gilbert 2006). Many studies on context-based interventions report gains in students' attitudes to science and technology, with learning gains similar to those of conventional approaches. Typically, teachers use links to contexts to motivate students and support the learning of mathematics content, rather than to develop the ability to explore real-world contexts through the use of mathematics (Gainsburg, 2008). An important pillar in constructivist pedagogy is contextualising learning using an authentic environment and real-world examples. A majority of students have difficulties in connecting mathematics to real world applications and this could be a reason for failure in mathematics. Making Mathematics relevant via real world examples

4.2 INOUIRY-BASED LEARNING

Students today find it difficult to understand what it is they need to know and many times why they need to know it. A common question asked in a mathematics classroom is "why do I need to know this?" or "When will I ever use this?" Answering this "need to know" question has been coined the term inquiry. Inquiry goes much deeper than asking simple questions such as, "is it going to rain today?" Inquiry is a process of learning that is driven by questioning, thoughtful investigating, making sense of information and developing new understandings. Writing is a powerful tool that not only helps to improve students' writing abilities, but also helps students clarify and extend their knowledge in the area of mathematics.

A common mistake that some mathematics teachers make when assessing student performance is believing that if a student can "do" a problem, then the student "understands" math. Most mathematics students (and some teachers) seem to interpret the students' role as essentially acquiring (i.e., memorizing) facts and algorithms that can be immediately applied to the solution of given exercises; few students expect mathematics to be meaningful and fewer still see mathematics as a creative undertaking. Consequently, students are too often content with externally manipulating symbols and doing routine problems, without ever reaching a deep and personal understanding of the material. Inquiry based mathematics incorporates writing in mathematics which highlights this misconception and provides a natural teaching opportunity for developing students' mathematical reasoning skills.

4.3 ICT-RICH LEARNING ENVIRONMENT

ICT-rich teaching approaches include (individualized) computer-based instruction, games, feedback, interactive quizzes, computer based labs, simulations and robotics. It would be hard to propose a common mechanism by which ICT usage would lead to more positive attitudes, but many studies on ICT-based interventions report such gains. Proposed mechanisms include that students enjoy working with computers, students feel more safe to experiment and make mistakes, and/or students appreciate the (quick) feedback;

Vol. No.6, Issue No. 03, March 2017

www.ijarse.com

4.4 COLLABATIVE LEARNING

IJARSE ISSN (0) 2319 - 8354 ISSN (P) 2319 - 8346

Collaborative and cooperative teaching approaches, such as project-based work, discussion, "jigsaw" or peer feedback, tend to enhance social interaction and relatedness between learners, and quite often involve an increased ownership of the content to be learnt. Literature reports positive effects on students motivation, increased self-confidence and satisfaction, and more positive attitudes toward the subject matter.

4.5 EXTRACURRICULAR

Extracurricular activities are not part of the standard lesson plan or classroom environment, yet are part of, or are strongly linked to the school program. Examples include field trips, mobile science labs, summer camps, guest lectures, and visits to science centres. These types of interventions usually aim at raising curiosity (interest), encounters with role models/scientists (normality) and relatedness. Literature suggests that extracurricular activities can provide learners valuable and particularly motivational opportunities to learn science.

V. CONCLUSION

Utilising student-centred methods in mathematics instruction has been reported to increase students' interest in the subject and their success rate to increase students' appreciation of the role of mathematics in life, and to increase motivation to learn mathematics and realise its applicability. Uses of student-centred approaches in mathematics instruction have been reported to result in similar or sometimes better exam scores. Students who have strategic knowledge and awareness of mathematics that enables effective problem solving and self-regulation. Number of student-centred pedagogies such as Inquiry/Problem/Project Based Learning (I/P/P/BL) methods have been developed and investigated; these approaches are often conducted in teams or small groups of students, but also in a solo mode. Methods used for facilitating conceptual understanding and constructivist learning include novel pedagogies (e.g. collaborative learning, inquiry/problem/project/discovery based learning), contextualising with real-world examples, the use of documentary movies for stimulating motivation and self-efficacy beliefs, mathematical software packages (e.g. Matlab/Simulink, Mathematica, Maple and MapleTA, etc), and online tools.

REFERENCES

- [1]. Smith, G. H. & Wood, L. N. (2012). Assessment of learning in university mathematics. International Journal of Mathematical Education in Science and Technology, 31(1), 125–132.
- [2]. Steffe, L. P. & Thompson, P. W. (2013). Interaction or inter subjectivity? A reply to Lerman. Journal for Research in Mathematics Education, 31(2), 191–209.
- [3]. Ward, B., Campbell, S., Goodloe, M., Miller, A. J., Kleja, et al. (2010). Assessing a mathematical inquiry course: Do students gain an appreciation for mathematics? Primus, 20(3), 183–203.
- [4]. Ward, B., Campbell, S., Goodloe, M., Miller, A. J., Kleja, et al. (2010). Assessing a mathematical inquiry course: Do students gain an appreciation for mathematics? Primus, 20(3), 183–203.
- [5]. Tynjälä, P. (2014). Towards expert knowledge? A comparison between a constructivist and a traditional learning environment in the university. International Journal of Educational Research, 31(5), 357–442.

Vol. No.6, Issue No. 03, March 2017

www.ijarse.com

- [6]. Turner, P. (2008). A predictor-corrector process with refinement for first-year calculus transition support. Primus, 18(4), 370–393.
- [7]. Steffe, L. P. & Thompson, P. W. (2015). Interaction or inter subjectivity? A reply to Lerman. Journal for Research in Mathematics Education, 31(2), 191–209.
- [8]. Potocka, K. (2010). An entirely-online developmental mathematics course: creation and outcomes. Primus, 20(6), 498–516.
- [9]. King, S. O. & Robinson, C. L. (2013). Pretty lights and maths! Increasing student engagement and enhancing learning through the use of electronic voting systems. Computers & Education, 53 (1), 189–199.
- [10]. Hekimoglu, S. &Kittrell, E. (2010). Challenging students' beliefs about mathematics: the use of documentary to alter perceptions of efficacy. Primus, 20(4), 299–331.