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ABSTRACT 

Earlier, the role of cryptography was confined to the transmission of data securely. With the development of 

internet and the increased use of resource constrained devices, the need was to build up cryptosystems which 

are faster as well as reliable. Elliptic Curve Cryptography (ECC) is the major advancement in the field of 

cryptography providing faster and secure methods for encryption. The foundation of ECC is the operation of 

scalar multiplication in elliptic curves over finite fields. ECC uses shorter key sizes as compared to the classic 

public key cryptosystems (e.g. RSA) thus providing faster communication methods. The intent of this paper is to 

discuss the basic arithmetic of elliptic curves and their role in elliptic curve cryptography. 
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I. INTRODUCTION 

In 20
th

 century, with the development of internet, the need was to have a cryptography technique which would 

not involve sharing the same keyword between two parties. In 1976, Whitfield Diffie and Martin Hellman 

proposed Diffie Hellman key exchange protocol, which was the foundation of Public Key Cryptosystem [1]. In 

1977, this protocol was implemented in RSA Encryption technique. In 1985, another public key cryptosystem 

was developed on the basis of nature of elliptic curves in finite fields, named as Elliptic Curve Cryptography 

(ECC). The first use of elliptic curves in cryptography was recommended by Neal Koblitz and Victor S. Miller. 

ECC utilizes the methods of Diffie-Hellman Key Exchange and RSA Encryption, but in this system the prime 

numbers are selected with the help of an elliptic curve in a finite field [2, 3]. An elliptic curve over a field K is 

an algebraic curve in a plane and is represented by equation (1), as follows: 

                          (1) 

where, l & m  K and  

In other words, the set of points (x,y) which satisfy the above equation together with the point at infinity ‘ ’ 

represent an Elliptic curve [4]. It can be observed that this set of points become an Abelian group under the 

composition defined in next section. 
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II. GROUP OPERATIONS FOR ELLIPTIC CURVE 

2.1 Point Addition  

Elliptic curves form a group under the composition of point addition. The geometric and algebraic approach of 

this composition is discussed below. 

2.1.1 Geometrical Approach 

Given two points P (  in the set E =  as shown in Fig.2.1.1 

(a). If P ≠ -Q, then the composition is defined as P + Q = R where, –R is the point on the curve where the 

straight line joining the points P and Q meet the curve and R is the reflection of –R with respect to x-axis. If P = 

-Q, then the line through this point intersects at a point at infinity . In this case, P + (-P) =  as shown in 

Fig.2.1.1 (b).  is the additive identity of the group of points on the elliptic curve [5]. 

    
Fig.2.1.1 (a) point addition P ≠ -Q              Fig.2.1.1 (b) point addition P = -Q 

 

2.1.2 Algebraic Approach 

The coordinates of the point –R are . Suppose S is the slope of the line joining the points P and Q, 

therefore S can be expressed by equation (2): 

S =      (2) 

As the points P, Q and –R lie on the elliptic curve, therefore equation (1) implies the following equations: 

         (3) 

Further, the coordinates of R can be computed as: 

               

      (4) 

The operation defined above is also known as Point Addition [2]. Under this operation, elliptic curves satisfy all 

the properties of an abelian group. 

2.2 Point Doubling 

Point Doubling of a point P ( is defined as the addition of the point to itself. If , then 

geometrically a tangent is drawn to the curve at that point. The point of intersection of the tangent with the curve 

is -2P and the reflection of -2P with respect to x axis is 2P. If , then doubling that point is the point at 
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infinity  [2, 6]. In order to implement Diffie Hellman key exchange protocol, the group operation scalar 

multiplication is also required. 

2.3 Scalar Multiplication 

Scalar Multiplication is nothing but the repeated point addition. Given a point P (  on the curve and any 

scalar k Z, the scalar multiplication is defined as: 

Q = kP = P+P+P+........+P (k times) 

The operation of scalar multiplication acts as a one way function for Diffie Hellman key exchange protocol [6, 

7]. 

 

III. ELLIPTIC CURVE CRYPTOGRAPHY 

3.1 Elliptic Curve Discrete Log Problem 

Consider an elliptic curve over a finite field . Given P  E ( ) and a scalar k , it is easy to evaluate 

Q; where Q = kP. But if P and Q are given, it is very difficult to find the scalar k. This is the principle used 

behind the Diffie Hellman key exchange protocol [4]. 

3.2 Domain Parameters 

The set of parameters {l, m, p, G, n, h} are the domain parameters for Elliptic Curve Cryptography where l and 

m are the curve parameters; p is the prime number; G is a point on the curve that generates a cyclic subgroup; n 

is the order of the subgroup generated by the G; h is the cofactor. Ideally, h=1. The parameter n is the least 

positive integer such that nG =  (the point at infinity). The set of domain parameters is the information 

required by all the parties in order to implement protocol.  [8].  

3.3 Implementation 

In this section, the implementation of Elliptic Curve Cryptosystem is discussed. All the parties which are 

communicating on a public network are aware of the domain parameters. In particular, if there are two parties 

then, both the parties choose their private keys say  respectively.  

1   

1   

Both parties evaluate the following points and send them publically to each other. 

1
st
 party:  A = G 

2
nd

 party: B = G 

Despite of knowing the points A ( ) and B ( ), no one on the public network can find the values of 

scalars . Using B and its private key , the first party computes B = G. Similarly, using A and its 

private key , the second party computes A = G. As the scalar multiplication is commutative, they reach the 

same point without even knowing each other’s secret keys [9]. 

 

IV. ECC vs RSA 

Elliptic curve cryptography provides smaller key sizes as compared to RSA and other public key cryptography 

methods. Small key sizes require less storage memory, less power consumption and fewer processing units to 
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implement the protocol. Smaller keys of ECC provide same level of security as compared to RSA. For example, 

1024 bit security potency of RSA is similar to 163 bit security potency of ECC [10, 11]. Table 4.1 represents the 

key sizes for RSA and ECC with same security level [11-13].  

Table 4.1 Comparison between RSA and ECC 

Security Level (in Bits) RSA: Modulus Size (in Bits) ECC: Key Size (in Bits) Key Size Ratio 

80 1024 160 6.4:1 

112 2048 224 9.1:1 

128 3072 256 12:1 

192 7680 384 20:1 

256 15360 512 30:1 

 

V. CONCLUSION 

The remarkable applications of elliptic curves in secret writing make them significant for research. The 

operation of scalar multiplication in elliptic curves is considered to be more efficient computationally as 

compared to exponentiation in RSA. The advantage of ECC over RSA is that it maintains same level of security 

and provides faster communication using smaller key sizes. It has been incorporated in many security standards 

because of its efficient implementation. Moreover, ECC is quite appropriate for wireless communications, like 

mobile phones and smart cards. In order to enhance the security level of ECC, improvement can be made in 

scalar multiplication algorithm. 
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