International Journal of Advance Research in Science and Engineering
Vol. No.6, Issue No. 03 , March 2017

www.ijarse.com

TJARSE
ISSN (0) 2319 - 8354
ISSN (P) 2319 - 8346

SOFTWARE DEFINED TESTBED USING MININET
EMULATOR

Vipin Gupta', Sukhveer Kaur?, Karamjeet Kaur®

' U-Net Solutions, Moga, India
23 Computer Science and Applications, AD College, Dharamkot, Moga, India

ABSTRACT

Software Defined Networking (SDN) is changing the way future networks will function. Already Big companies
like Google, facebook are using SDN. SDN is also the emerging research area. For doing research we need
SDN testbed such as Geni, Emulab etc or very costly sdn switches. Since most of the time, getting resources at
testbeds or purchasing hardware for SDN is difficult, we need some other solution. For performing research,
Mininet emulator has been created. Mininet can be easily installed on Desktop, Laptop, Physical server or as a
virtual machine thus enabling you to perform simple as well as complex experiments on limited resources
available. Mininet is an emulator which uses light weight virtualization technology to create simple as well as
complex networks. It enables you to create a network consisting of few hosts and switches as well as thousands
of hosts and switches by using simple commands. Other solutions for doing research could be using simulators
such as NS3 but the problems with simulator is that you cannot run real code on them whereas an emulator
allows you to run real, unmodified code. Other choice is creating hardware test beds which can prove very
costly and time consuming. Mininet offers easiness of use, good performance, scalability, accuracy. In this
paper, we will paper, first section will be introduction to Mininet, Second section about SDN Architecture, 3rd
Section will discuss about different mininet topologies, 4rth section about using mininet with network, Fifth

section will deal with using Mininet advantages & disadvantages & last section will be conclusion.

Keywords: Mininet, OpenFlow, Software Defined Networking, POX Controller

I. INTRODUCTION

Mininet is an emulator which allows you to create various topologies consisting of hosts, switches, controllers
and links between them. Mininet [1] is very easy to install, use and very light weight in resource usage. It can be
used as SDN test bed for performing SDN [2] experiments. It is very powerful tool in testing SDN networking
applications. It is written in python and uses light weight virtualization for creating and isolating network
resources.

Mininet offers many features that are available in other simulators, emulators and testbeds. There are many
hardware testbeds such as VINI [3], FIRE [4], Emulab [5], and GENI [6] available. Using these testbeds is
difficult and if you want to create testbeds of these types then it is very costly and time consuming process.
There are simulators such as NS3 [7] and Estinet [8] available, but you cannot run real code on these simulators.

On the other hand, Mininet is readily available, very inexpensive, quickly configurable, runs unmaodified code.

169|Page

International Journal of Advance Research in Science and Engineering
Vol. No.6, Issue No. 03 , March 2017 IJARSE

T ISSN (0) 2319 - 8354
www.ljarse.com ISSN (P) 2319 - 8346

You can use mininet to create pre defined topologies or custom topologies. Another advantage is that it is open

source.

I1. SOFTWARE DEFINED NETWORKING ARCHITECTURE

SDN is going to change the ways future networks are going to get implemented. All the network devices
consist of control plane and data plane. Control plane contains the control logic and data plane performs the
actual forwarding of the packets. But the problem with these devices is that they are tightly integrated. You
cannot buy them separately. There functionality is rigid. These devices are classified as hub, router, switches,
load balancers, proxy servers, firewall, intrusion detection, intrusion prevention systems. The devices are vendor
specific and very costly. There is very large time gap between adding new features in these devices. Also it
depends on the will of vendors whether they are going to add the feature or not and most importantly when.
Most of the time, their decision is based on financial considerations. SDN has decoupled these planes. Now you
can acquire & use data plane and control plane separately. The data plane is available in both the physical and
virtual form. The control plane is also called controller (network OS). Various controllers such as NOX [9],
POX [10], Beacon [11], Floodlight [12], OpenDayLight [13], and RYU [14] are available. All of these
controllers are open source and free. The difference is mainly in which languages they are written and what
openflow version they support. Openflow is protocol for communication between control plane and data plane.
POX, RYU are written in python while Floodlight, Opendaylight in Java. While Pox supports Openflow version
1.0 while RYU supports versions from 1.0 to 1.5.

The architecture of SDN consists of 3 components, Openflow Controllers, switches and Openflow protocol as
shown in Fig.1. Southbound openflow [15] protocol is used for control plane and data plane communication.
The connection between both is maintained through secure channel. Openflow based devices consists of flow
table. Flow tables contain flow entries having matching fields, actions and flow statistics. The match fields are
based on layer 1 to layer 4 fields such as source mac, destination ip, port etc. Actions could be forward, drop.
Packets received at switch are matched against flow entries. If match is found, action is performed according to
flow entry. If no match is found, then packet is send to the controller where the application logic will decide
what to do with the packets. Then controller will add entries into flow table of switch. It is the controller's
responsibility to manage entries in the switch table.

4 SDN Network*
Applications :

ionpp

Northbound AP

X X %

SDN Controller

OpenFlow

Southbound API

v

I OpenFlow Switch I

Fig. 1. SDN architecture
170|Page

International Journal of Advance Research in Science and Engineering @
Vol. No.6, Issue No. 03 , March 2017 IJARSE

B ISSN (0) 2319 - 8354
www.ljarse.com ISSN (P) 2319 - 8346

I11. MININET TOPOLOGIES

There are many default topologies available in mininet such as minimal, linear, tree, single. Here we will be
discussing these different topologies. Topology in mininet consists of hosts, switches, controller and links
between them as shown in Fig. 2. Understanding naming conventions is required. Host are named from h1 to
hN, switches are from s1 to SN. Names of the interfaces in hosts are created by prefixing host name followed by
Ethernet name beginning with 0. Host h1's first interface will be h1-eth0, second hl-ethl, and third hl-eth2 and

SDN App
Controller

Pt "

==
[est - A==
\q‘;"ﬂ=]‘|]=‘;—;}9
I ——=-3
m’

Physical Hardware Network

|

Controller|
D ————————————— E;’E
1 1
= -:h
]
; # mn -topo linear,3
[> h1 ping h3

Mininet Emulated Network

Fig. 2 mininet emulator

so on. In switches, the number starts from 1. So Switch ports are named s1-ethl, s1-eth2, and s1-eth3 and so on.
3.1 Mininet Topologies
3.1.1 Minimal Topology

#mn --topo minimal
It will create a topology consisting of 1 switch s1 and 2 hosts hl and h2. The hosts will be having default ip
address of 10.0.0.1 and 10.0.0.2 as shown in Fig. 3.

171|Page

International Journal of Advance Research in Science and Engineering
Vol. No.6, Issue No. 03, March 2017 IJARSE

.o ISSN (0) 2319 - 8354
www.jjarse.com ISSN (P) 2319 - 8346

3.1.2 Single Topology
#mn --topo single,3

It creates 1 switch and n hosts. It creates links between switch and n hosts as shown in Fig. 4

s1-eth1, S1-eth2 s1-eth1, = \s1-eth3
/ A 7 b I N
7 AN / Tl \\
’ N ’ w! N
7 ~ / 1 N
y AN , I ~
h1-eth0,” \ _h2-eth0 _/"h1-eth0 I h2-eth0 s _h3-eth0
“ > h1 h2 h3
h1 h2
10.0.0.1 10.0.0.2 10.0.0.3
10.0.0.1 10.0.0.2

Fig. 4 single topology
Fig. 3 minimal topology

3.1.3 Linear Topology
#mn --topo linear,3

It consists of n switches and n hosts. It creates link between hosts, switch & between switches as shown in Fig.

e{\a,
sl-eth1 s2-eth1 | s3-eth1 |
1 I I
1 I I
1 | I
] 1 |
] 1 I
I]]
1 | I
] I I
h1-eth0 | h2-eth0 | h3-eth0 |
h1 h2 h3
10.0.0.1 10.0.0.2 10.0.0.3

Fig. 5 linear topology
5.

3.1.4 Tree Topology
#mn --topo tree,2
It creates topology having n levels and default 2 hosts are attached with each switch as shown in Fig. 6
3.1.5 Custom Topology
We can create custom topologies by writing few line of python code. We can create any type of complex

topology.

172|Page

International Journal of Advance Research in Science and Engineering
Vol. No.6, Issue No. 03 , March 2017

www.ijarse.com

TJARSE
ISSN (0) 2319 - 8354
ISSN (P) 2319 - 8346

<= =

si-eth1 .~ N 51 -eth2

,

s2-eth3 .~ \ 53 eth3

E=

's3-eth1 | 33 eth2

|52 eth1 |s2-eth2 I
1 | |
1 I
: ! ' :
1 1 ! 1
1 ! al ol
21 21 £! £
g1 3| N o]
Tl 2 1
= CE ! 2 ' Z,
|
10.0.0.1 10.0.0.2 10.0.0.3 10.0.0.4

Fig. 6 tree topology

IV. USING MININET WITH NETWORK APPLICATIONS
We can create networking applications such as hub, switch and load balancer using controllers. We can use
mininet to test these applications. We are here using pox controller. Pox controller is written in python. By
writing few lines of python code, we can write these applications. The mininet virtual machine that we
downloaded from mininet web site already contains hub, switch and load balancing applications. These are very
simple applications. We can create very complex applications like firewall, intrusion detection system, intrusion
prevention systems and then test these applications on mininet. Whenever you are creating applications, we
should be aware of the logic behind these devices i.e. we must know how these devices work, only then we can
create these applications.
4.1 Hub
Hub is a device which floods the packets that it receives on a specific port. As in Fig. 7, when the hub receives
the packet at port 1, it floods the packets to all others ports, in this case port 2 and port 3. For all the
applications, we will create the topology using this simple command

mn --topo single,3 --controller=remote
In one terminal. On other terminal in case of hub, we will run the command

./pox.py pox.forwarding.hub
We capture the traffic using tcpdump command. When we are sending ping from h1 to h3, packets are received
on h2 also, thus verifying the default behavior of hub.
4.2 Switch
Hub is an unintelligent device. On the other hand, switch is intelligent device as shown in Fig. 8. It maintains a
mac table consisting of entries showing the relationship between ports and the mac address of the host
connected to that port. As can be seen in figure 8, when we are pinging from hl to h3, no packet is received on
h2. That is we are successful in testing switch application on topology created on mininet. The command for

running switch application is

173|Page

International Journal of Advance Research in Science and Engineering 4
Vol. No.6, Issue No. 03, March 2017

www.ijarse.com

/pox.py pox.forwarding.12_learning

hub
application

POX
controller

10.0.0.2

switch
application

POX
controller

4.3. Load Balancer

X "Node: h1" (on mininet-vm) _ o x

root@mininet-vm:“# ping -c1 10,0,0,3

PING 10,0,0.3 (10,0,0,3) 56(84) bytes of data.

64 bytes from 10,0,0,3: icmp_seq=1 tt1=64 time=1,47 m
s

---10,0,0,3 ping statistics ---

1 packets transmitted, 1 received, 0X packet loss, ti
ne Ons

rtt min/avg/max/mdev = 1,477/1,477/1.477/0,000 ms
root@mininet-vm:"#

JARSE
ISSN (0) 2319 - 8354
ISSN (P) 2319 - 8346

X "Node: h2" (on mininet-vm) _ o x

root@mininet-um:“# tcpdump -i h2-eth0

tcpdump: verbose output suppressed, use -v or -w for
full protocol decode

listening on h2-eth0, link-type EN1OMB (Ethernet), ca
pture size 65535 bytes

01:49:20,664417 ARP, Request who-has 10,0,0,3 tell 10
0,0,1, length 28

20,664787 ARP, Reply 10,0,0.3 is-at 00:00:00:00
$00:03 (oui Ethernet), length 28

01:49:20,664991 IP 10,0.0,1 > 10,0,0,3: ICHP echo req
uest, id 1909, seq 1, length 64

01:49:20,665221 IP 10,0,0,3 > 10,0,0,1: ICHP echo rep
ly, id 1903, seq 1, length B4

01:49:25,670814 ARP, Request who-has 10,0,0,1 tell 10

"Node: h3" (on mininet-vm)

root@mininet-um:™# tcpdump -i h3-eth0
tcpdump: verbose output suppressed, use -v or -wv for

full protocol decode

listening on h3-eth0, link-type ENLOMB (Ethernet), capture size 65535 bytes
01:49:20,664411 ARP, Request who-has 10,0,0.3 tell 10,0,0,1, length 28

01:49:20,664460 ARP, Reply 10,0,0,3 is-at
01:49:20,664988 IP 10,0,0.1 > 10,0,0.

00:00:00:00:00:03 (oui Ethernet), length 28
ICHP echo request, id 1909, seq 1, length 64

01:49:20,665021 IP 10,0,0.3 > 10,0,0,1; ICHP echo reply, id 1903, seq 1, length 64
01:49:25,670760 ARP, Request who-has 10,0,0.1 tell 10,0,0,3, length 28
31:43:25.870847 ARP, Reply 10,0,0.1 is-at 00:00:00:00:00:01 (oui Ethernet), length 28

Fig. 7 hub application

BUCLEHU SR CURTHIDE QY) IR I “Node: h2" (on mininet-vm) _ o x

root@mininet-vm:™# ping -c1 10,0,0.3
PING 10.0,0.3 (10,0,0,3) 56(84) bytes of data,

---10,0,0,3 ping statistics -—-

me Ons
rtt min/avg/max/mdey = 9,872/9,872/9,872/0,000 ms
root@mininet-vn:™# |

root@mininet-vm:“# tcpdump -i h2-eth0
tcpdump: verbose output suppressed, use -v or -w for

64 bytes from 10,0,0,.3: icmp_seq=1 tt1=64 time=3.87 m| full protocol decode
S

listening on h2-eth0, link-tupe EN1OMB (Ethernet), ca
pture size 65535 bytes
01:58:32,522237 1P 10,0,0,1 > 10,0,0,3: ICHP echo req

1 packets transmitted, 1 received, OX packet loss, ti|uest, id 1923, seq 1, length 64

root@mininet-vm:“# tcpdump -i h3-eth0

01:58:37,529830 ARP, Request who-has 10,0,0,1 tell
01:58:37,561618 ARP, Request who-has 10,0,0.3 tell
01:58:37,561647 ARP, Reply 10,0,0,3 is-at

Fig. 8 switch application

x: "Node: h3" (on mininet-vm) -0 %

tcpdump: verbose output suppressed, use -v or -w for full protocol decode
listening on h3-eth0, link-tupe ENLOMB (Ethernet), capture size 65535 bytes
01:58:32,522230 IP 10,0.0.1 > 10.0,0,3: ICHP echo request, id 1923, seq 1, length 64
01:58:32,522291 IP 10,0,0.3 > 10,0,0,1: ICHP echo reply, id 1923, seq 1, length 64

0,0,3, length 28

10,
10,0,0,1, length 28

03 (oui Ethernet), length 28

00:00:00:00:003
01:58:37,564163 ARP, Reply 10.0.0.1 is-at 00:00:00:00:00:01 (oui Ethernet), length 28

Load Balancer is a an application that is used to distribute load to different servers based on different strategies

such as random, round robin, least connections etc. Default load balancer included with pox controller is based

on random strategy. For testing this application we created the same topology as used above using mininet. Then

we ran the application in other terminal by using the command

174|Page

International Journal of Advance Research in Science and Engineering 4’
Vol. No.6, Issue No. 03, March 2017 IJARSE

i ISSN (0) 2319 - 8354
www.jjarse.com ISSN (P) 2319 - 8346

Jpox.py pox.misc.ip_loadbalancer -ip=10.0.0.254 -servers=10.0.0.2,10.0.0.3
As shown in Fig. 9, when we try to access web server on virtual ip address 10.0.0.254 from host h1, it first send
the request to h3 and then 3 requests to h2, then again to h3 on based of random strategy. Thus mininet enables
us to test different application. Same code can be used on real hardware without making any changes. Thus
Mininet can be used as perfect test bed for testing SDN Applications.

load balancer
application

POX
controller

RUCEE SSRCLEUINILTE QY R 7 “Node: h2" (on mininet-vm) = x5
root@nininet-vm:“# curl 10,0,0,254 root@mininet-vm:™# python -m SimpleHTTPServer 80 &
welcome to load balancer [1] 1964

root@mininet-vm:“# curl 10,0,0,254
welcome to load balancer
|root@mininet-vm:“# curl 10,0,0,254
welcome to load balancer
root@nininet-vm:“# curl 10,0,0,254
welcome to load balancer
root@nininet-vm:“# curl 10,0,0,254
welcome to load balancer

root@mininet-vm:“# Serving HTTP on 0,0,0,0 port 80 ...

10,0,0.1 - - [05/Mar/2017 02:04:10] “GET / HTTP/1,1" 200 -
10,0,0.1 - - [05/Mar/2017 02:04:11] “GET / HTTP/1.1" 200 -
l]j0.0.0.l - - [05/Mar/2017 02:04:12] "GET / HTTP/1.1" 200 -

root@nininet-vm:"#

[o "Node: h3" (on mininet-vm) ==
root@mininet-vm:"# puthon -m SimpleHTTPServer 80 &
[1] 1965

root@mininet-vm:“# Serving HTTP on 0,0,0,0 port 80 ..,
10,0,0,1 - - [05/Mar/2017 02:04:03] "GET / HTTP/1.1" 200 -
H).0.0.l - = [05/Mar/2017 02:04:13] "GET / HTTP/1.1" 200 -

Fig. 9 load balancer application

V. MININET ADVANTAGES AND DISADVANTAGES

5.1. Advantages

-You can create simple defaults topologies consisting of 1 switch, 2 hosts as well as large topologies consisting
of thousands of switches and hosts.

- You can also create custom topologies by writing few lines of python code.
- Mininet can be installed on physical or virtual machine. It can be installed on even raspberry pi.

- No need for any modification in network application code. Any code that will run on mininet, will run on real
hardware.

- Creating networks in mininet takes very little time. Performance is good.
- Using mininet is very easy. Learning curve is very fast.

5.2. Disadvantages

175|Page

International Journal of Advance Research in Science and Engineering

Vol. No.6, Issue No. 03 , March 2017

TJARSE
ISSN (0) 2319 - 8354

www.ljarse.com ISSN (P) 2319 - 8346

- When creating very large topologies, performance suffers.
V1. CONCLUSION

Mininet can be used as a tested for doing SDN research. It enables us to create standard topologies as well as

custom topologies by writing few lines of python code. It is much better than simulators where you cannot run

real application code. One issue with Mininet could be performance when creating very large scale topologies.

Future work could involve extending mininet code to work in clustering mode so that performance can be

further increased.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Lantz, de Oliveira, Rogério Ledo Santos, Ailton Akira Shinoda, Christiane Marie Schweitzer, and Ligia
Rodrigues Prete. "Using mininet for emulation and prototyping software-defined networks." In
Communications and Computing (COLCOM), 2014 IEEE Colombian Conference on, pp. 1-6. IEEE,
2014.

Nunes, Bruno Astuto A., Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka, and Thierry Turletti. "A
survey of software-defined networking: Past, present, and future of programmable networks." IEEE
Communications Surveys & Tutorials 16, no. 3 (2014): 1617-1634.

Bavier, Andy, Nick Feamster, Mark Huang, Larry Peterson, and Jennifer Rexford. "In VINI veritas:
realistic and controlled network experimentation."” ACM SIGCOMM Computer Communication Review
36, no. 4 (2006): 3-14.

Lantz, Bob, Brandon Heller, and Nick McKeown. "A network in a laptop: rapid prototyping for software-
defined networks." In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, p.
19. ACM, 2010.

G arcia, Andres Perez, Christos Siaterlis, and Marcelo Masera. "Testing the fidelity of an emulab
testbed.” In Distributed Computing Systems Workshops (ICDCSW), 2010 IEEE 30th International
Conference on, pp. 307-312. IEEE, 2010.

Berman, Mark, Jeffrey S. Chase, Lawrence Landweber, Akihiro Nakao, Max Ott, Dipankar Raychaudhuri,
Robert Ricci, and Ivan Seskar. "GENI: A federated testbed for innovative network experiments."
Computer Networks 61 (2014): 5-23.

Carneiro, Gustavo. "NS-3: Network simulator 3." In UTM Lab Meeting April, vol. 20. 2010.

Wang, Shie-Yuan, Chih-Liang Chou, and Chun-Ming Yang. "EstiNet openflow network simulator and
emulator." IEEE Communications Magazine 51, no. 9 (2013): 110-117.

Gude, Natasha, Teemu Koponen, Justin Pettit, Ben Pfaff, Martin Casado, Nick McKeown, and Scott
Shenker. "NOX: towards an operating system for networks." ACM SIGCOMM Computer Communication
Review 38, no. 3 (2008): 105-110.

[10] Kaur, Sukhveer, Japinder Singh, and Navtej Singh Ghumman. "Network programmability using POX

controller.” In ICCCS International Conference on Communication, Computing & Systems, IEEE, no. s
134, p. 138. 2014.

176 |Page

International Journal of Advance Research in Science and Engineering
Vol. No.6, Issue No. 03 , March 2017

www.ijarse.com

TJARSE
ISSN (0) 2319 - 8354
ISSN (P) 2319 - 8346

[11] Erickson, David. "The beacon openflow controller." In Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking, pp. 13-18. ACM, 2013.

[12] Govindraj, Srinivas, Arunkumar Jayaraman, Nitin Khanna, and Kaushik Ravi Prakash. "Openflow: Load
balancing in enterprise networks using floodlight controller." University of Colorado (2012).

[13] Khattak, Zuhran Khan, Muhammad Awais, and Adnan Igbal. "Performance evaluation of OpenDaylight
SDN controller." In Parallel and Distributed Systems (ICPADS), 2014 20th IEEE International Conference
on, pp. 671-676. IEEE, 2014.

[14] Lin, Thomas, Joon-Myung Kang, Hadi Bannazadeh, and Alberto Leon-Garcia. "Enabling sdn applications
on software-defined infrastructure.” In Network Operations and Management Symposium (NOMS), 2014
IEEE, pp. 1-7. IEEE, 2014.

[15] McKeown, Nick, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford,
Scott Shenker, and Jonathan Turner. "OpenFlow: enabling innovation in campus networks.” ACM
SIGCOMM Computer Communication Review 38, no. 2 (2008): 69-74.

177|Page

