International Journal of Advance Research in Science and Engineering

Vol. No.6, Issue No. 01, January 2017 www.ijarse.com

CANONICAL-LAPLACE TRANSFORM AND THEIR UNITARY REPRESENTATIONS

S.B.Chavhan

Department of Mathematics Digambarrao Bindu College Bhokar.Dist Nanded (India)

ABSTRACT

Thelinear canonical transform is a useful tool for optical analysis and signal processing. In this paper we have defined canonical-Laplace transform and have also established some results for this transform.

Index Terms: Canonical Transform, Fourier Transform, Fractional Fourier Transform, Laplace Transform, Testing Function Space.

IINTRODUCTION

The Fourier analysis is undoubtedly the one of the most valuable and powerful tools in signal processing, image processing and many other branches of engineering sciences, the fractional Fourier transform, a special case of linear canonical transform is studied through different analysis. Almeida had introduced it and proved many of its properties. The fractional Fourier transform is a generalization of classical Fourier transform, which is introduce from the mathematical aspect by Namias at first and has many applications in optics quickly. The definition of Laplace transform with parameter p of f(x) denoted by $L\lceil f(x) \rceil = F(p)$

$$L[f(x)] = \int_{0}^{\infty} e^{-px} f(x)$$

And definition of canonical transform with parameter s of f(t) denoted by

$$\{CTf(t)\}(s) = \frac{1}{\sqrt{2\pi ib}} e^{\frac{i}{2}(\frac{d}{b})s^2} \int_{-\infty}^{\infty} e^{-i(\frac{s}{b})t} e^{\frac{i}{2}(\frac{a}{b})t^2} f(t)$$