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ABSTRACT 

We present a static and spherically symmetric  solution of the general relativistic field equations in isotropic 

coordinates for perfect fluid. The solution is regular and  well behaved having positive finite central pressure 

and positive finite central  density. The solution is well behaved for all the values of u lying in the range 0 < u < 

.16. The central red shift and  surface red shift  are positive and monotonically decreasing. we have constructed 

a model for superdense star by assuming the surface density    
314 /102 cmgb  . The mass of the 

compact  star comes out to be 1.165 MΘ with linear dimension 10.796 Km and moment of inertia 

2451059.1 cmgm . The solution is not only well behaved but also having one of the simplest  expressions so 

far known well behaved solutions.  

 

Keywords:  Isotropic coordinates, Einstein’s field equations, Superdense star, General relativity, 

Exact solutions. 

 

I. INTRODUCTION 

 

Ever since the first exact solution of field equations for a perfect fluid sphere of constant density was 

obtained by Schwarzschild[1],  the relativists have been proposing different models of immensely 

gravitating astrophysical objects by solving field equations both in curvature and isotropic 

coordinates. Exact solutions with well behaved nature of Einstein’s field equations are of vital 

importance  in relativistic astrophysics  because the distribution of matter in the interior of stellar 

object can be easily understood in terms of simple algebraic relations. Due to the nonlinearity of 

Einstein’s field Equations it becomes difficult to obtain the new exact  solutions. Various exact 

solutions of Einstein’s field equations are known till date but not all of them are physically relevant. 

Hence a new solution is always welcome which should be regular and well behaved .              

A considerable number of known solutions of Einstein’s field equations are of finite central density 

and finite central pressure which describe the internal structure of stellar objects[2]. These solutions 

are important  for describing the interior of compact objects like neutron star and Quark star. Delgaty 

and Lake [2] also pointed out  that only nine solutions so far are regular and well behaved; out of 
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which seven in curvature coordinates(Tolman [3], Patvardhav and Vaidya[4], Mehra [5], Kuchowich 

[6], Matese and Whiteman[7], Durgapa[8]   and only two solutions in    isotropic coordinates [9-10]. 

Many solutions in isotropic coordinates have been explored so far[11-12]. In this paper we have tried 

to study in detail one of the solutions earlier obtained by Tewari[13] . 

From the physical point of view, the mathematical solutions must satisfy certain                          

physical requirements to render them physically meaningful. For well behaved nature of the solution 

in isotropic coordinates, the following conditions  should be satisfied[14]. 

(i) The solution should be free from physical and geometrical singularities i.e. finite and positive   

values of central pressure , central density and non zero positive values of 
e and 

e . 

(ii)  The solution should have positive and monotonically decreasing expressions for  pressure and 

density( andp )with the increase of r. The solution should have positive value of ratio of 

pressure-density and less than 1(weak energy condition) and less than 1/3(strong energy 

condition) throughout within the star, monotonically decreasing as well [15]. 

(iii)  The solution should have positive and monotonically decreasing expression for fluid 

parameter
2c

p


 with the increase of r. 

(iv)  The solution should have positive and monotonically decreasing expression for velocity of 

sound 








d

dp
 with the increase of r  and causality condition should be obeyed at the centre i.e. 

1
2


dc

dp
 

(v) The  red shift Z   should be positive, finite and monotonically decreasing in nature with the 

increase  of r. 

(vi) 
 d

dpp
 , everywhere within the ball. 











p

d

dp

dp

dp

d

pd

e

e 
log

log
  

   For realistic matter 1 (Pant and Maurya [16]) 

Keeping in view the above mentioned conditions we are trying to study one of the solutions obtained 

by Tewari [13] in isotropic coordinates. The solution is well behaved and have been used to 

construct the model of  superdense  objects.The mass of  superdense objects based on this solution  

is  maximized by assuming surface density 
14102b g/cm

3
. 
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II. FIELD EQUATIONS IN ISOTROPIC COORDINATES: 

 

Let us consider a spherical symmetric metric in curvature coordinates 

    
  22222222 sin  ddrdredtceds 

                                                     (1)
 

  Where  α and β are functions of r. Einstein’s field  equations of gravitation for a                        

  nonempty    space-time       are                                                   
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 Where jiR  is a Ricci tensor. jiT  is energy- momentum tensor and R is the scalar                      

curvature. The energy - momentum tensor  jiT  is defined as  

Tij = ( p + ρ )vi v j − p gij                                                                                            (3) 

Where p denotes the pressure distribution , ρ the density distribution  and  i  the velocity vector, 

satisfying the relation 

1ji

jig 
                                                                                                             (4)

 

Since we are dealing with static field, therefore, 

 

                                                            (5) 

For the metric (1)  the field equation (2) reduces to the following equations 
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where prime ( ' ) denotes the differentiation with  respect to r . 

From (6) and (7) we obtain following differential equation in α and β 
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Our task is to explore the solution of eq. (9) and obtain the fluid parameters p and ρ from Eqs. (6) and 

(8). 

 

III. SOLUTION TO BE STUDIED 

 

Equation (9) is solved by assuming an ad hoc relation of gravitational potential g11 and r, analogus to  

Tewari [13]and Boutros[17] and  considering the arbitrary constants in such a manner that the solution 

should be well behaved. We assume 

  89

12
22/ 1


 Cre B


                      

2Crx          and    
dx

d
y


                          (10) 

We    get the following Riccati differential equation in y  

)1(7921
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24

2 2
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xx
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
                                                                      (11) 

 

Which yields the following  solution, 
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Where A, B, and C are arbitrary constants. 

The  expressions for  pressure and density are obtained as :           
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I. Properties of   the  new  solution:  

The central values of pressure and density are given by 

 


















A

AC
C

Bc

pG

1

23
9

89

48
2

0

4



                                                                                          (15)

 



 

268 | P a g e  

2

0

2 89

1448

B

C

c

G








 

                                                                                                                      (16)

 

The central values of pressure and density will be non zero positive definite, if the following 

conditions will be satisfied. 

   A   > - 9/32 ,    c > 0.                                                                                                                      (17) 

      Subjecting the condition that positive value of ratio of pressure-density and less than 1 at the 

centre i.e. 1
2

0

0 
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 which leads to the following inequality, 
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All the values of A which satisfy equation  (17)   will lead  to the condition 1
2

0
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Differentiating (13)  with respect to r, 
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Thus extrema of p occur at the centre if 

00  rp                                                                                                                              (20)
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                          =  - ve   if    094534082992 2  AA                                                              (22) 

Thus the expression of right hand side of equation (20) is negative showing thereby that the pressure  

p is maximum at the centre and monotonically decreasing. 

Now differentiating equation (12) with respect to r. 

 

 
 32
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4
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C
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                                                            (23) 

Thus the extrema of  ρ occur at the centre  if  

00  r                                                                                                                               (24)                                                                     
 



 

269 | P a g e  

 
2

2

02 7921

92408

B

C

c

G
r 



                                                                                                               (25)                                                                                                                    

The right hand side of this equation  will be –ve  for positive as well negative value of B  and C. 

Thus , the expressions of right hand side of (22) and (24) are negative showing thereby that the 

density ρ is maximum at the centre and monotonically decreasing.. 

In view of (21) and (24), we observe that central pressure and central  density  are maximum at the 

centre and monotonically decreasing with the increase of radial coordinate r. 

The square of adiabatic sound speed at the centre,  
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  )(1 veand       
 

If      A   >  -9/32                                                                                                                          (27)                                                                                                                                                                           

In view of (12) and (13) the ratio of pressure-density is given by 
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IV. BOUNDARY  CONDITIONS 

 

The solutions so obtained are to be matched over the boundary with Schwarzschild’s exterior solution 
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Where M is the mass of the ball as determined by the external observer and R is the radial coordinate 

of the exterior region. The usual boundary conditions are that the first and second fundamental forms 

are continuous over the boundary r = rb  or equivalently R=Rb. 

Applying the boundary conditions we get the values of the arbitrary constants in terms of 

Schwarzschild’s   parameters   

bRc

GM
u

2
      and    bR

 

We obtain two values of constants A. 
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 From equation (29) and (30) we obtain the value of k as 
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Surface  density  is  given by 

 








 uu
R

r
c

G

b

bb 95772177
3

18
2

1

2

2

2



> 0                                                                     (35) 

Provided,  u  <   .30 

Central  red  shift  is  given by  
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The surface red shift is given by 

  121
5.0



uZb                                                                                                                           (37) 

Table 1: The central values of pressure, density, pressure density ratio,  square of sound 

speed, red shift  for different values of u. 

 

Sl.No.       u       0

2

4
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8
( rbrp
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       0
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8
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
         02
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      02

))(
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( r
d

dp

c 
       (Z)0 

 

1            0.01          0.0004              0.0853                   0.00504           0.3816         0.0153 

2            0.02          0.0017              0.1747                   0.0101             0.3893          0.0316             

3            0.04          0.0076              0.3676                   0.0208             0.4056          0.0669 

4           0.06           0.0186              0.5844                   0.0319             0.4228           0.1066 

5            0.08          0.0362               0.8332                  0.0455              0.4413          0.1520                    

6            0.10          0.0629               1.1266                  0.0558              0.4610          0.2047           

7            0.12         0.1024                1.4856                  0.0689              0.4825          0.2670 

8            0.16         0.2550                 2.587                    0.0985            0.5323          0.4390 

Table 2 :  By assuming the surface density 314 /102 cmgb  ,the variation of maximum  

Neutron star mass  ,   Radius Rb,  central  red shift Z0  and surface red shift 

  121
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uZb   with u . 

Sl. No.              u                    
2

2

8
bb r

c

G



                

M

M
                Rb in km                       Z0                               Zb 
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1                 .01                        0.0426                         0.019                  2.884                        0.0153                      0.010  

2                 .02                       0.0842                          0.055                  4.077                        0.0316                      0.020                 

 3                .04                      0.1642                          0.155                   5.756                        0.0669                      0.042  

4                 .06                      0.2390                          0.284                   7.026                        0.1066                      0.066                  

5                .08                       0.3077                           0.435                   8.070                      0.1520                     0.0911 

6                 .1                        0.3692                          0.604                   8.953                       0.2047                      0.1180       

7                .12                      0.4222                           0.785                   9.700                      0.2670                       0.1470                               

8                .16                       0.4953                          1.165                   10.796                    0.4390                       0.2126 

 

                 

                Fig 1:     The   variation  of  mass  and  radius  of  star  with  u. 

 

Table 3:  The march of pressure, density, pressure-density ratio, square of adiabatic sound  

speed , adiabatic  index , red shift  within the ball corresponding to   u=.16 
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0.0                     0.255                 2.587                  0.0985              0.5323        5.40            0.4390 

0.1                     0.245                 2.519                  0.0976              0.5322        5.45            0.4343 

0.2                     0.221                  2.334                 0.0948              0.5317        5.60            0.4211 

0.3                     0.186                  2.074                  0.0900              0.5309       5.89             0.4009 

0.4                     0.149                  1.789                  0.0833              0.5295       6.35             0.3759 

0.5                     0.112                  1.515                  0.0744              0.5274        7.08            0.3481 

0.6                     0.080                  1.271                  0.0635              0.5245        8.25             0.3193 

0.7                     0.053                  1.064                  0.0505              0.5205        10.30           0.2907 

0.8                     0.031                 0.894                   0.0354              0.5151        14.51           0.2631 

0.9                     0.014                  0.756                  0.0186              0.5083        27.32           0.2370 

1.0                     0.000                  0.645                   0.0000              0.4999          ∞             0.2126 

 

Fig 2: The variation of p ,  ,
2c

p


, 









d

dp

c2

1
 and Z  from centre  to surface for u = 0.16 . 

 

VI. Application: Slowly Rotating Structures and their Application to the pulsars. 

         For slowly rotating structures like  the Vela pulsars (rotation velocity about 70 rad/sec), one can calculate 

the moment of inertia in the first-order approximation which appears in the Lense-Thrirring frame dragging 

effect. However, for the present case, it is very useful to apply an approximate, but very precise, empirical 
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formula which is based on the numerical results obtained for a large number of theoretical equations of state 

(EOS) of dense nuclear matter. For the type of solution considered in the present study, the formula yields in 

the following form[15], [18] . 

 I = (2/5)(1 + y)MR
2
;                                                                                                   (37) 

where y is the dimensionless compactness parameter measured in units of M (in km)/km, i.e 

y = (M/R) / M (in km) km
-1

                                                                                        (38) 

we can calculate the moment of inertia, for various super dense objects with the help of Equation (37), 

 VII. Discussions  and  Conclusions : 

         It has been observed that the physical parameters (p,  , z
c

p
,

2
) are positive at the centre and within the 

limit of realistic state of equation and monotonically decreasing for 16.00  u .  The causality condition is 

obeyed throughout within the ball. Thus, the solution is well behaved for all the values of  u satisfying the 

inequality 16.00  u . We now here present a  model of super dense star based on the particular solution 

discussed above by assuming surface density; 314 /102 cmgb  . Corresponding to u = 0.16, the resulting well 

behaved model has maximum mass M=1.165 M  with radius  Rb   10.796 km and Moment of inertia 

2451059.1 cmgm .                    
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