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ABSTRACT 

Optimization is the process by which we get the maximum and minimum value of the function. In this paper 

we are dealing with Barrier Function methods with KKT conditions. Barrier function method converts 

constrained optimization problem into unconstrained optimization problem and we get the feasible solution of 

the original problem. The paper aims to introduce the concept of Barrier Function Method. Then we will 

apply KKT multipliers in Barrier method. We will also discuss Sequential Unconstrained Minimization 

Techniques. In this Barrier method starts with the low value of barrier parameter and by the decreasing 

value of this parameter we get the sequence of unconstrained problems and solving this we will find the 

solution of original problem. 
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I. INTRODUCTION 

 

In Barrier method a penalty like term is added to the given objective function for the motive that the current 

solution remains interior to the feasible domain and a “Barrier” is created on the boundary of the feasible 

region. This method starts at feasible but sub-optimal points and creates optimality as penalty parameter 

approaches to zero. By this method we get the sequence of feasible points whose limit is an optimal solution 

to the original problem. The main motive of the Barrier Method is to remain the point x  of any 

approximation to the feasible region border. However, barrier term cannot be defined for equality constraints. 

The most popular Barrier Functions are: 

 Inverse Barrier Function               
 xg

xb
i
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 Logarithmic Barrier Function     
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II. CONCEPT OF BARRIER FUNCTION 

 

Barrier function that defined in the interior of the feasible region is a continuous function in constrained 

optimization. If a point approaches to the boundary of the feasible region of an optimization problem then the 

value of the barrier function on that point increase to infinity. 

As we take constrained optimization problem  

 P:               Minimize  xf  

                    Subject to   sixgi ,...,2,1,0   

   sixgR i

n ,...,2,1,0   

To solve this problem by Barrier Method the barrier function is 

    



s

i

xgxb
1

  ,  is a continuous function that satisfies 

*   0y if 0y  

*   y if    0max xymli
x

 

So the unconstrained optimization problem is 

                   Minimize    xbxf 
 

                 
 Subject to   0xg  

nRx .  

Now we take an example and solve by Barrier Method 

Example: Minimize xz      

                 Subject to 02  x  

Sol.  We have   xxf   

And                2 xxg  

 Inverse Barrier function for this problem is 

 
 2

1






x
xb  

The unconstrained problem for this problem is 

     xbxfxB   

        
 2


x

x


 

 2
2

1







xx

B 
 

Now   0




x

B
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 
0

2
1

2





x



  ,    2
2

1



x



  , 

  
2

2x  

   2x
, 

2 x
 ,     

 2x  

Now take  




2
00 

 ltxlt
 ,    

2* x  

So the feasible solution of the given problem is 2 . 

  2xf is the optimal solution of the problem. 

 

III. BARRIER CONVERGENCE THEOREM 

 

Consider the constrained problem: 

Minimize  xf  

Subject to   sixgi ,...,2,1,0 
      

Xx . 

Here RRf n :  and 
sn RRg : are continuous functions and X  be non empty closed set in 

nR . By 

barrier method the unconstrained problem is 

      



s

i

i xgxfB
1

  

let k  be the sequence of the parameters that satisfies kk   10 so 0k as k . Let kx  be 

the sequence of the solution of  kB   for  ,...,2,1k . Suppose for the unconstrained problem there exist a 

solution 
*x for which       00  xgxxN for 0 . Then any limit point x  of  kx  is solution of 

the original problem. 

Proof. Let x  be the limit point of the sequence kx .As  xf  and  xg  are continuous functions so  

   xfxflt k

k



 

And     0


xgxglt k

k
                                                                                                       (a) 

So x   is the feasible solution of the given problem. 

If   0xg then by the barrier function is defined as: 

  0kxb  

So    0


k

k
k

xblt  ( 0k  for k )                                                                                  (b) 

If the feasible solution x  lies on the boundary on the region then   


k

k
xblt . 
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Now         k

k
k

k

k

k

k

k

k
xbltxfltxbxflt  infinf


  

                                                        
 xf                                                                                      (by (a) and (b)) 

As we want to prove that x  is the solution of the original problem, for this we have to prove that x  is the 

global minimizer. 

Suppose x  is not global minimizer, there would exist a feasible vector 
*x such that 

   xfxf *
 

That can be approached arbitrary closely through the interior of the feasible set. So there exist a point x~  in the 

domain of the barrier function such that 

   xfxf ~
                                                                      (c) 

By the def. of 
kx  

    k

k

k xbxf      kxbxf k  ~~   

Taking limit as k then  

    



k

k

k

k

k
ltxbxflt      xbxf k

~~   

   xfxf ~ ( 0k  for k )     

It is the contradiction of  (c).   

It shows that x  is the global minimizer of the given problem. So x is the solution of the original problem..  

 

IV. KARUSH-KUHN-TUCKER MULTIPLIERS IN BARRIER METHOD 

 

Consider the problem           Minimize  xf  

                                            Subject to   sixgi ,...,2,1,0 
    

nRXx  . 

The barrier function is defined as 

    



s

i

i xgxb
1

  

Then the unconstrained problem is 

   xbxf   

Or   xf   


s

i

i xg
1

             (1) 

Here gf , and  are continuously differentiable with   0y If 0y and   


ylt
y


0

So we have  

      xgxgxb i

s

i

i  
1

  
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Let x be the limit point of the sequence  kx  of the solutions of  xb for  ,...,2,1k . Then by convergence 

theorem x  is the optimal solution of the original problem. 

If   0:  xgiI i be the index set of active constraints then there exist a unique sequence of Lagrange’s 

multipliers siui ,...,2,1,  such that 

    0
1

 


xguxf i

s

i

i
 

0iu for si ,...,2,1  

 And     0iu for Ii                                                                                                        (2) 

As 
kx is the solution of the unconstrained problem  

       0
1

 


k

i

s

i

k

ik

k xgxgxf   

      0
1

 


k

i

s

i
ik

k xguxf                                                                  (3) 

Where      sixgu k

ikik ,...,2,1,    

And 0k and  xxk  as k  

So      0 k

ikik xgu     for Ii  , 

From   (2) and (3) we have   Iiuu iik  .  

So we can estimate the set of Lagrange multipliers by ku when
 0 , then these multipliers approaches to 

the optimal set of Lagrange multipliers u . 

 

V. SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE 

 

We prefer to solve the sequence of barrier problems instead of solving just one, with low value of parameter  , 

the reason is that the Hessian  ,2 xb  of the barrier function become ill-condition with the small value of 

  which create difficulty for the solution of the problem. Barrier method starts with the low value of barrier 

parameter and by the decreasing value of this parameter we get the sequence of unconstrained problems. We 

solve the barrier problem by the following procedure: 

Step: 1 Starting with
kx , solve the problem: 

                                 Minimize        xbxf   

                                  Subject to     0xg
,  

Xx . 

Let 
1kx be an optimal solution then 
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Step: 2 If  1k

k xb stop; otherwise, take kk  1 , take 1 kk  and start the procedure again. 

 

Example:       Minimize     
2

2

2

1 2xx   

                         Subject to    ,01 21  xx   2

21, Rxx  . 

Sol.   We have                2

2

2

1 2xxxf   

           Subject to         01 21  xxxg  

Barrier function for this problem is defined as   

    xgxb  log  

 1log 21  xx  

The unconstrained problem is  

                                 Minimize    xbxf   

                                  Subject to    0xg  

    We can write it as 

      1log, 21  xxxfxB   

  1log2 21

2

2

2

1  xxxx   

Now              
1

2
21

1

1 






xx
x

x

B 
 

And              
1

4
21

2

2 






xx
x

x

B 
 

For                0
1






x

B
         and     0

2






x

B
 

We have                0
1

2
21

1 



xx

x


                         (4) 

0
1

4
21

2 



xx

x


             (5) 

Subtract (4) from (5), we get 

1
4

21

2



xx

x


0
1

2
21

1 



xx

x


 

024 12  xx
 ,  12 24 xx 

, 122 xx   

Put this value in (4), we get 

  0412,0
13

4,0
12

22 2

2

2

2

2

22

2 





 


xx
x

x
xx

x  
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6

311
,

6

311
,

24

48164
2

 






x  

               As     122 xx   

So           
3

311

6

311
21

 














 
x  

Now start the iterations with 11  and the scalar 1.0 and  0,01 x  

Iteration: 1     
 

1,
3

3
,

3

21
,

3

41
,

3

1311
1 








x  

                           

 
2

1
,

6

3
,

6

21
,

6

41
,

6

1311
2 








x  

    And                 21

2 1 xxxg  , 5.0,5.011   

                        
    xgxb  log2

1 , 
    5.0log,5.0log   

                        
  301.0,301.0   

Iteration: 2   1.0,1.01,12    

                        

71339.0,
3

140175.2
,

3

3.11
,

3

3.011
1 





x  

                      

35669.0,
6

140175.2
,

6

3.11
2 


x  

                    
  070.0,35669.071339.013 xg  

And                070.0log1.03

2 xb
, 

       1155.0,1549.11.0,070.0log1.0  Iteration: 3     23    ,  
01.0,1.01.0   

                       

,
3

03.011
1


x 6716.0,

3

014889.2
,

3

03.11



  

                      6

03.11
2


x 3358.0

6

014889.2
  

                    

 
0074.0

6716.03358.014



xg
 

                   
      0074.0log01.04

3 xb  

                                
       0213.0131.201.00074.0log01.0 

 

Iteration: 4  001.01.001.034  
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                       3

003.11
1


x 6672.0

3

001499.2
  

                       

3336.0
6

001499.2
2 x  

                    
  0008.03336.06672.015 xg  

                          

              0031.0097.3001.00008.0log001.00008.0log001.05

4 xb Iter

ation: 5   0001.01.0001.045    

                       

6667.0
3

00014.2

3

0003.11

3

0003.011
1 





x  

                      

3334.0
6

00014.2
2 x  

                    
  0001.03334.06667.016 xg  

          

              0004.0.40001.00001.0log0001.00001.0log0010.06

5 xb  

  So finally we get 

Iter. k   
k  1kx    1kxg   1k

k xb  

       

5

4

3

2

1

 

 

0001.0

001.0

01.0

1.0

1

 

 5.0,1  

 

 

 

 3334.0,6667.0

3336.0,6672.0

3358.0,6716.0

35669.0,71339.0

 

 

 

 

 

0001.0

0008.0

0074.0

07.0

5.0











 

0004.0

0031.0

0213.0

1155.0

301.0

 

We get  1k

k xb  at the th5 iteration, so we get the optimal solution is  3334.0,6667.* x  

Or  









3

1
,

3

2*x

 

VI. CONCLUSION 

 

Optimization is the technique by which we obtain the optimal solution of the given problem. By this paper we 

conclude that The Barrier Function Method is the powerful method that is used for those problems which have 

the robust feasible region. The solution of unconstrained problem approaches to the solution of the original 

problem from inside of the feasible region that is why this method is also called Interior Point Method. Barrier 
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Method also helps to estimate the Karush-Kuhn-Tucker Multipliers by which the optimal solution of the given 

problem can be obtained. 
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