Vol. No.6, Issue No. 01, January 2017 www.ijarse.com

STUDY OF α-DECAY AND CLUSTER DECAY OF SUPERHEAVY ELEMENTS Z=120

Priva Dhuria

Assistant Professor, Jan Nayak Ch. Devi Lal Memorial College, Sirsa, Haryana, (India)

ABSTRACT

We have analyzed the different-decay chains of Z=120 element observed recently, by using the Preformed cluster model which is based on the Quantum Mechanical Fragmentation Theory. Not only the α -decay characteristics have been studied but also the cluster decay calculation being studied first time. The α -decay characteristics gives the information about the nuclear structure, and compared the results with the experimental data of Dubna and the Generalized Liquid Drop Model (GLDM). The PCM calculations are in good agreement with the observed data. The superheavy elements are expected to show extra stability at the shell closures. On this basis some α -decay chains are studied, we have found the most stable nuclei at Z=112, N=161,163; Z=114, N=171,178,179; and at Z=124, N=194. Also, the possibility of heavy cluster emissions with respect to α -decays 301 120 α -decay chain is studied. The calculated cluster decays show the large stability at the 289 114 parents against 10 Be decay giving Z=114, N=175 proton and neutron number respectively. Another possibility of 14 C and 34 Si cluster decay of the parent 301 120 gives Z=114, N=173 and Z=106, N=161 daughter nucleus respectively. 49 Ca is the most probable emitted cluster from the same parent giving Z=100, N=152 daughter nucleus.

Keywords: superheavy nuclei, Fragmentation, α-decay, Cluster decay, Preformed Cluster, model (PCM) of Gupta and Collaborators, Preformation probability.

I. INTRODUCTION

In the past two decades, the synthesis of superheavy elements and their decay lifetime measurements have been two major goals of nuclear physics. This field has gotten new impetus by recent synthesis of several heavy elements and their subsequent reconfirmations [3, 8, 6, 7, 5] with the advent of radioactive ion beam facilities it is now believed that ultimately it would be possible to reach the center of the island of superheavy elements. In this scenario, the study of decay properties of superheavy elements, primarily by α -emissions has become an important domain of intense research. Discoveries of new superheavy elements have also provided a testing ground for many theoretical formalism. It has been shown that half-life calculations in the WKB framework, it was shown that the generalized liquid drop model including the proximity effects could reasonably estimates the experimental data on superheavy nuclei when the experimental Q-values were used. In the recent experiments designed to synthesize the element 115 in the 243Am + 48 Ca reaction at Dubna in Russia, three similar decay chains consisting five consecutive α - decays and another different decay chain of four consecutive α -decays are

Vol. No.6, Issue No. 01, January 2017 www.ijarse.com

detected, and the decay properties of these synthesized nuclei are claimed to be consistent with consecutive α decays originating from the parent isotopes of new element 115, ²⁸⁸115 and ²⁸⁷115, respectively. The RMF calculation has been carried out using the model Lagrangian density with nonlinear terms. It has been observed in this calculation that the isotopes of the element 115 are very deformed. For the measured α -decay energies of the newly produced isotopes, one can estimate half-lives for allowed transitions and compare them with experimental values under the Geiger-Nuttall treatment using the formula by Viola and Seaborg. Parameters are obtained from fits to the T_a versus Q_a values of 65 known even-even nuclei with Z > 82 and N > 126. The ratio between the experimental T_{expt} and T_{cal} half-lives define the hindrance factors caused by odd numbers of protons and or neutrons in the newly synthesized nuclei. The measured T_{exp} values closely reproduce the calculated ones for the first two nuclei of these chains: thus the element 115 and element 113 isotopes have rather low hindrance factors, if any, for α -decay. The next magic numbers beyond the doubly magic nucleus ^{208}Pb is a long standing question in the nuclear structure physics. A number of theoretical calculations [12] -[20] have been made in the late 1960's for the existence of long lived superheavy nuclei and about the next magic numbers and all of them predict Z=114, 124, 164 for protons and N=184, 196, 236, 318 for neutrons as magic numbers. Recently, some models [21, 22, 23] on the basis of Strutinsky approach, have found Z=114 more stable, whereas Hartree-Fock calculation based models [24, 25] predict the highest stability at proton number Z=120,124, 126. The macromicroscopic calculations predict spherical shell closures at Z=114 and N=184. In the relativistic mean field calculations Rutz predicted Z=120 and N=172 as the next magic shells in the spherical RMF theory, meanwhile Patra predicted Z=120 and N=184 in the axially deformed RMF theory as the next possible magic numbers for superheavy elements. In the Skyrme Hartree-Fock calculations with parameters sets of SKI3 and SKI4 the most pronounced shell effects at Z=120 and N=184 are obtained, while in the Hartree-Fock-Bouglibove calculations with the finite range Gogny force one predicts Z=120, 126 and N= 172, 184 as the possible proton shell closures. Very recently Tappa applied the new effective field theory to analyze the isotopic and isotonic chains of superheavy nuclei and searched next shell closures. They predicted Z=120 and N=172 and Z=120 and N=258 as possible spherical doubly magic super heavy nuclei. As mentioned above, the most theoretical studies predicted Z=120 as a possible magic number of proton in superheavy nuclei. Actually, the key role of the shell stability of nuclei at Z=120 was first pointed out by Gupta et al. Recently Gupta et al used the Quantum Mechanical Fragmentation theory to describe the interaction potential for some target-projectile combinations of the elements as shown: ${}^{136}\text{Xe} + {}^{166}\text{Dy} \rightarrow {}^{302}120^*, {}^{94}\text{Sr} + {}^{208}\text{Pb} \rightarrow {}^{302}120, {}^{50}\text{Ca} + {}^{252} \rightarrow {}^{302}120$. The results obtained in the QMFT illustrated that the interaction potential can provide the information of the synthesis of superheavy nuclei at Z=120 in the fusion reaction. They predicted ⁹⁴Sr+²⁰⁸Pb as a best cold fusion reaction for producing ³⁰²120 nucleus. During the last two decades evidences has been confirmed experimentally connected to superheavy elements. The advancement in the accelerator technology has opened the door to synthesizing the new superheavy elements. The Z=107-112 [26] superheavy elements are synthesized successfully using the lead and bismuth targets in the cold fusion reactions. Since, elements Z=114 [27, 28] and 116 [29], identified by hot fusion reactions. The hot fusion reactions are based on heavy actinide targets from Th to Cf with very light C to S projectile. These heaviest iso..topes decay predominantly by groups of α particles (or α chains) as expected theoretically [30, 31]. The minimum excitation energy is obtained using the ⁴⁸Ca beam in the hot fusion

Vol. No.6, Issue No. 01, January 2017

www.ijarse.com

reactions. A possibility of ⁵⁰Ca has shown a better beam in [32] for the formation of superheavy nuclei by cold fusion, since ⁵⁰Ca is a radioactive nucleus.

In this work we have investigated the stability of superheavy nuclei by analyzing the various α -decay chains. Not only the α -decays but most probable heavy cluster also looked in this process. For this calculation we have used the preformed cluster model of gupta and collaborators [33, 34, 35, 36, 37, 38]. The results of our calculations, compared with recent works, are presented in here.

II. CALCULATIONS

The α -decay chain in superheavy nuclei

In this calculation we have pay more attention to the stability of superheavy elements, particularly, the effects of spherical or deformed shells. Large half-lives or stability of superheavy nuclei being considered due to the shell closure effects either they are proton number or neutrons. We have study some α -decay chains $^{289,291,297,301,303,305,309,311}120$ and $^{320,326}128$, notice in the figure (1, 2) the maxima of the half-lives in the α -decay chains $^{289,291,297}120$, connected to the (Z=112, N=161), (Z=112, N=163), and (Z=114, N=171) appears for the ground state configurations of these nuclei.

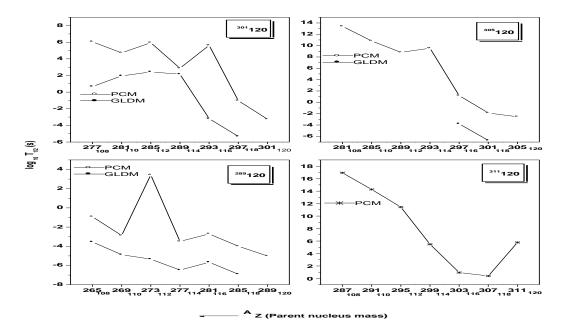


Figure 1: The calculated α -decay half-lives based on the preformed cluster model, are compared with available data of the GLDM model, and plotted as a function of the parent nucleus mass for various α -decay chains.

Vol. No.6, Issue No. 01, January 2017 www.ijarse.com

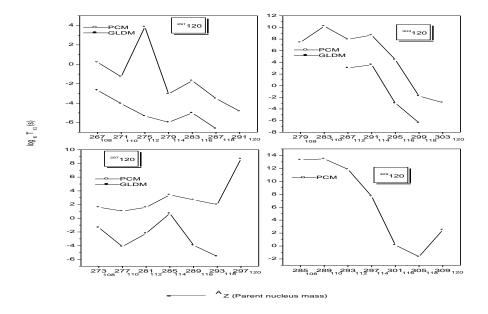


Figure 2: The same as for fig.1.but for different α -decay chains.

The maximum stability of neutron numbers at (N=161, N=163) are identified close to the N=162 which is a deformed magic number [162]. Similarly, the element (Z=114, N=171) is found more stable against α -decay. Since (Z=114, N=184) predicted magic numbers, both for proton and neutron. After scanning a wide range of superheavy nuclei [24] N=172 magicity is predicted with Z=120[9] proton number. From the figure (3, 4), the alpha decay energy Q_ are plotted against the charge number. In the $^{289,291,297}120$ _-decay chains the shell closure effects are clearly visible and reflects the strength of the shell closure at (Z=112, N=161, 163) and (Z=114, N=171).

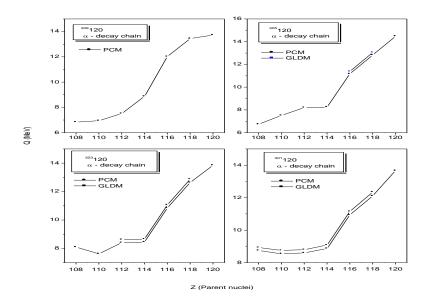


Figure 3: The calculated Q-values on the basis of PCM compared with GLDM, plotted as a function of charge number for various α -decay chains.

Vol. No.6, Issue No. 01, January 2017 www.ijarse.com

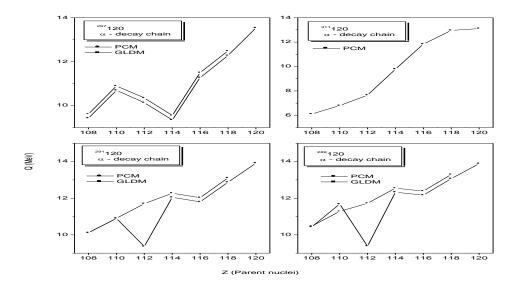


Figure 4: the same as for fig.3, but for different α -decay chains.

A very interesting point has been noticed in the study of these α -decay chains that the Q-values are almost same at Z=120 with different neutron numbers, since a considerable difference has been noticed at Z=108 for the same. We have found in all the α -decay chains that for a fixed number of protons Z=114, the α -decay half-lives are maximum around the N~178 relative to other neutron numbers. Not only the stability but a sharp change also in the α -decay half-lives has been noticed in these $^{297,301,303,305}120$ α -decay chains at Z=114 within the range of neutron numbers from N=171-179. The maximum α -decay half-lives occurs at (Z=114, N=179). The calculated Q-values and α -decay half-lives are compared with recent calculations [163] based on the generalized liquid drop model (GLDM). The results of both the calculations PCM and GLDM shows the similar trends. From the figure (5),

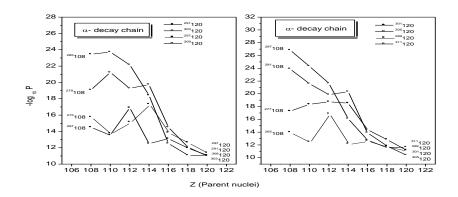


Figure.5: The Calculated penetrability P on the basis of PCM, plotted as a function of the parent charge number for various α -decay chains

Interested enough that the penetration probabilities of all the α -decay chains are almost same of the order 10^{-12} at Z=120, but it changes towards the lower atomic number rapidly. In this fig.5 element $^{305}120$ have the maximum penetration probability than the $^{311}120$ element. Which means (Z=120, N=185) have more decay probability against the α -particle than the (Z=120, N=191) nucleus. Hence (Z=120, N=191) is more stable nucleus than the (Z=120, N=185). The fig. 6 shows the pre-formation probabilities of α -particles,

Vol. No.6, Issue No. 01, January 2017 www.ijarse.com

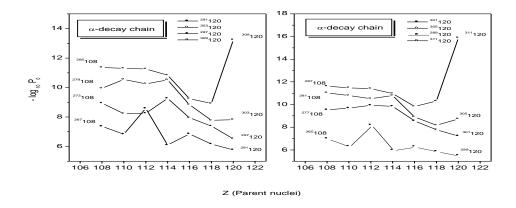
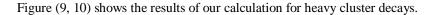



Figure 6: The calculated preformation probability using the PCM model, plotted as a function of the parent charge number for various α -decay chains.

It is clear that the 289120 α -decay chain parents have largest preformation probabilities compare to other α -decay chain parents. It also noticed that the preformation probability for the $^{305}120$ is larger compared to the $^{311}120$ nucleus in many order.

III. POSSIBLE CLUSTER DECAY FROM 301120 DECAY CHAIN

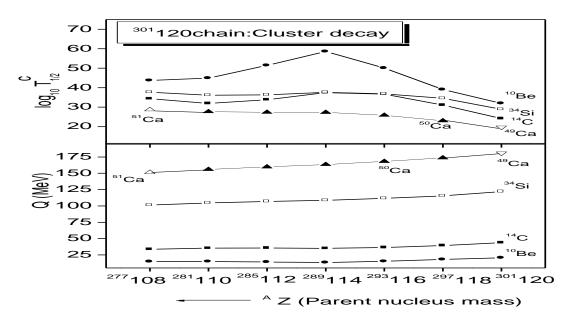


Figure 9: The calculated decay half-lives and the Q-values on the basis of PCM for some cluster decays of the parents of α -decay chain for the $^{301}120$ plotted as a function of the parent nucleus mass.

Vol. No.6, Issue No. 01, January 2017 www.ijarse.com

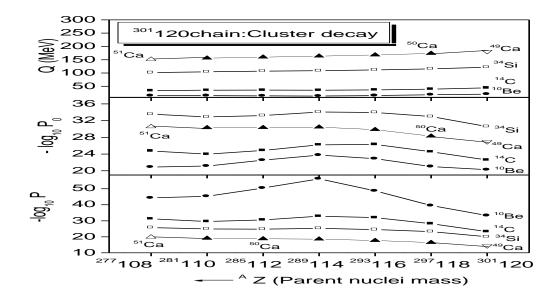


Figure 10: The PCM calculated Q-values, penetrability P and preformation factors P_0 for some cluster

decays of the parents of α -decay chain for $^{301}120$, plotted as a function of the parent nucleus mass.

We have found that 10 Be is the most probable cluster because its have smaller penetration probability P and larger pre-formation probability P₀ in all the parents. For the 10 Be, the $\log T_{1/2}$ is much larger compare to other clusters, so that all parents are stable against 10 Be decay. The Q-values are plotted against the mass number, of all the possible clusters. It is clearly seen that the behavior of Q-values are completely independent from the mass number. There is another interesting feature appear in this cluster decay calculation, the maximum half-life of the parent Z=114, A=289 against the 10 Be cluster decay. Clearly shell stabilizing effects appears in the considered decay. So, (Z=114, N=175) nucleus are observed most stable in cluster radioactivity studies. The decay of 10 Be of parent 301 120 give the daughter (Z=116, N=175) 291 116 nucleus. The next excitement of this study is the decay of 14 C and 34 Si of the parent 301 120. The cluster 14 C gives daughter (Z=114, N=173) and for the cluster 34 Si gives the (Z=106, N=161), a deformed magic nucleus 267 106. Since, 34 Si have lowest preformation probability in all the cases the clusters, $^{49-51}$ Ca shows more decay probability compare to others. The decay of 49 Ca from 301 120 gives the (Z=100, N=152) deformed daughter [44].

Table 1: The calculated α -decay half lives and other characteristics for ground state decay of superheavy nuclei in various α -decay chains, based on PCM, compare with GLDM calculations. Binding energies are taken from the Audi-Wapstra & Moller et.al, (2003), data table. [10,11]

	PCM				GLDM	
Parent	\mathbf{Q}_{a}	Po	P	$\text{Log}_{10}\text{T}^{lpha}_{_{1/2}}$	\mathbf{Q}_{a}	Log ₁₀
	(MeV)			(a)	*(MeV)	Τ ^α _½
						(a)
³¹¹ 120	13.106	1.77* 10 ⁻¹⁶	2.14* 10 ⁻¹²	5.766		
³⁰⁷ 118	12.956	3.4* 10 ⁻¹¹	7.9* 10 ⁻²⁵	0.397		

Vol. No.6, Issue No. 01, January 2017 www.ijarse.com

303116	11.006	1 7 4 4 10-10	1 74 10-13	0.045	ı	T 1
³⁰³ 116	11.836	1.54* 10 ⁻¹⁰	1.7* 10 ⁻¹³	0.945		
²⁹⁹ 114	9.786	1.07* 10 ⁻¹¹	7.7* 10 ⁻¹⁷	5.480		
²⁹⁵ 112	7.656	4.28* 10 ⁻¹²	2.37*10 ⁻²²	11.447		
²⁹¹ 110	6.796	3.48* 10 ⁻¹²	4.6* 10 ⁻²⁵	14.270		
²⁸⁷ 108	6.806	2.47* 10 ⁻¹²	1.49*10 ⁻²⁷	16.931		
³⁰⁹ 120	13.726	7.27* 10 ⁻¹⁴	9.62*10 ⁻¹²	2.489		
³⁰⁵ 118	13.446	1.21* 10-9	8.12*10 ⁻¹²	-1.658		
³⁰¹ 116	12.016	5.75* 10 ⁻¹⁰	2.85*10 ⁻¹³	0.144		
²⁹⁷ 114	8.866	1.486*10 ⁻¹¹	3.71* 10 ⁻¹⁹	7.681		
²⁹³ 112	7.516	5.92* 10 ⁻¹²	6.86*10 ⁻²³	11.867		
²⁸⁹ 110	6.946	5.29* 10 ⁻¹²	1.90*10 ⁻²⁴	13.468		
²⁸⁵ 108	6.836	4.386*10 ⁻¹²	3.45*10 ⁻²⁴	13.292		
³⁰⁵ 120	14.476	1.83* 10-9	4.005*10 ⁻¹¹	-2.547		
³⁰¹ 118	12.826	1.15*10 ⁻⁸	1.45*10 ⁻¹²	-1.877	13.05	-6.72
²⁹⁷ 116	11.166	1.24*10 ⁻⁹	1.21*10 ⁻¹⁴	1.191	11.38	-3.80
²⁹³ 114	8.246	1.66*10 ⁻¹¹	4.65* 10 ⁻²¹	9.549		
²⁸⁹ 112	8.206	3.01* 10 ⁻¹¹	1.36*10 ⁻²⁰	8.820		
²⁸⁵ 110	7.506	1.64* 10-11	2.539*10 ⁻²²	10.832		
²⁸¹ 108	6.746	9.27*10 ⁻¹²	1.27*10 ⁻²⁴	13.402.		
³⁰³ 120	13.846	1.67* 10-8	1.02*10 ⁻¹¹	-2.905		
²⁹⁹ 118	12.636	1.68*10 ⁻⁸	7.90*10 ⁻¹³	-1.778	12.87	-6.37
1						
²⁹⁵ 116	10.846	2.74*10 ⁻¹²	3.11*10 ⁻¹⁵	4.447	11.06	-3.00
²⁹⁵ 116 ²⁹¹ 114	10.846 8.946	2.74*10 ⁻¹² 3.08*10 ⁻¹¹	3.11*10 ⁻¹⁵ 1.83*10 ⁻²⁰	4.447 8.678	11.06	-3.00 3.59
²⁹¹ 114	8.946	3.08*10 ⁻¹¹	1.83*10 ⁻²⁰	8.678	8.66	3.59
²⁹¹ 114 ²⁸⁷ 112	8.946 8.406	3.08*10 ⁻¹¹ 5.66* 10 ⁻¹¹	1.83*10 ⁻²⁰ 5.24*10 ⁻²⁰	8.678 7.956	8.66	3.59
²⁹¹ 114 ²⁸⁷ 112 ²⁸³ 110	8.946 8.406 7.616	3.08*10 ⁻¹¹ 5.66* 10 ⁻¹¹ 2.79*10 ⁻¹¹	1.83*10 ⁻²⁰ 5.24*10 ⁻²⁰ 5.87*10 ⁻²²	8.678 7.956 10.233	8.66	3.59
²⁹¹ 114 ²⁸⁷ 112 ²⁸³ 110 ²⁷⁹ 108	8.946 8.406 7.616 8.096	3.08*10 ⁻¹¹ 5.66* 10 ⁻¹¹ 2.79*10 ⁻¹¹ 1.14*10 ⁻¹⁰	1.83*10 ⁻²⁰ 5.24*10 ⁻²⁰ 5.87*10 ⁻²² 8.60*10 ⁻²⁰	8.678 7.956 10.233 7.441	8.66	3.59
²⁹¹ 114 ²⁸⁷ 112 ²⁸³ 110 ²⁷⁹ 108	8.946 8.406 7.616 8.096	3.08*10 ⁻¹¹ 5.66* 10 ⁻¹¹ 2.79*10 ⁻¹¹ 1.14*10 ⁻¹⁰ 6.07* 10 ⁻⁸	1.83*10 ⁻²⁰ 5.24*10 ⁻²⁰ 5.87*10 ⁻²² 8.60*10 ⁻²⁰ 6.32*10 ⁻¹²	8.678 7.956 10.233 7.441 -3.254	8.66	3.59
²⁹¹ 114 ²⁸⁷ 112 ²⁸³ 110 ²⁷⁹ 108 ³⁰¹ 120 ²⁹⁷ 118	8.946 8.406 7.616 8.096 13.666 12.106	3.08*10 ⁻¹¹ 5.66* 10 ⁻¹¹ 2.79*10 ⁻¹¹ 1.14*10 ⁻¹⁰ 6.07* 10 ⁻⁸ 1.68*10 ⁻⁸	1.83*10 ⁻²⁰ 5.24*10 ⁻²⁰ 5.87*10 ⁻²² 8.60*10 ⁻²⁰ 6.32*10 ⁻¹² 1.43*10 ⁻¹³	8.678 7.956 10.233 7.441 -3.254 -1.027	8.66 8.62	3.59 3.03 -5.32
²⁹¹ 114 ²⁸⁷ 112 ²⁸³ 110 ²⁷⁹ 108 ³⁰¹ 120 ²⁹⁷ 118 ²⁹³ 116	8.946 8.406 7.616 8.096 13.666 12.106 8.887	3.08*10 ⁻¹¹ 5.66* 10 ⁻¹¹ 2.79*10 ⁻¹¹ 1.14*10 ⁻¹⁰ 6.07* 10 ⁻⁸ 1.68*10 ⁻⁸ 1.67*10 ⁻⁹	1.83*10 ⁻²⁰ 5.24*10 ⁻²⁰ 5.87*10 ⁻²² 8.60*10 ⁻²⁰ 6.32*10 ⁻¹² 1.43*10 ⁻¹³ 9.25*10 ⁻²⁰	8.678 7.956 10.233 7.441 -3.254 -1.027 5.630	8.66 8.62 12.34 11.15	3.59 3.03 -5.32 -3.19
²⁹¹ 114 ²⁸⁷ 112 ²⁸³ 110 ²⁷⁹ 108 ³⁰¹ 120 ²⁹⁷ 118 ²⁹³ 116 ²⁸⁹ 114	8.946 8.406 7.616 8.096 13.666 12.106 8.887 9.908	3.08*10 ⁻¹¹ 5.66* 10 ⁻¹¹ 2.79*10 ⁻¹¹ 1.14*10 ⁻¹⁰ 6.07* 10 ⁻⁸ 1.68*10 ⁻⁸ 1.67*10 ⁻⁹ 3.25*10 ⁻⁸	1.83*10 ⁻²⁰ 5.24*10 ⁻²⁰ 5.87*10 ⁻²² 8.60*10 ⁻²⁰ 6.32*10 ⁻¹² 1.43*10 ⁻¹³ 9.25*10 ⁻²⁰ 1.02*10 ⁻¹⁶	8.678 7.956 10.233 7.441 -3.254 -1.027 5.630 2.872	8.66 8.62 12.34 11.15 9.08	3.59 3.03 -5.32 -3.19 2.16
²⁹¹ 114 ²⁸⁷ 112 ²⁸³ 110 ²⁷⁹ 108 ³⁰¹ 120 ²⁹⁷ 118 ²⁹³ 116 ²⁸⁹ 114 ²⁸⁵ 112	8.946 8.406 7.616 8.096 13.666 12.106 8.887 9.908 8.734	3.08*10 ⁻¹¹ 5.66* 10 ⁻¹¹ 2.79*10 ⁻¹¹ 1.14*10 ⁻¹⁰ 6.07* 10 ⁻⁸ 1.68*10 ⁻⁸ 1.67*10 ⁻⁹ 3.25*10 ⁻⁸ 7.03* 10 ⁻¹⁰	1.83*10 ⁻²⁰ 5.24*10 ⁻²⁰ 5.87*10 ⁻²² 8.60*10 ⁻²⁰ 6.32*10 ⁻¹² 1.43*10 ⁻¹³ 9.25*10 ⁻²⁰ 1.02*10 ⁻¹⁶ 4.26*10 ⁻¹⁹	8.678 7.956 10.233 7.441 -3.254 -1.027 5.630 2.872 5.942	8.66 8.62 12.34 11.15 9.08 8.80	3.59 3.03 -5.32 -3.19 2.16 2.43
²⁹¹ 114 ²⁸⁷ 112 ²⁸³ 110 ²⁷⁹ 108 ³⁰¹ 120 ²⁹⁷ 118 ²⁹³ 116 ²⁸⁹ 114 ²⁸⁵ 112 ²⁸¹ 110	8.946 8.406 7.616 8.096 13.666 12.106 8.887 9.908 8.734 8.959	3.08*10 ⁻¹¹ 5.66* 10 ⁻¹¹ 2.79*10 ⁻¹¹ 1.14*10 ⁻¹⁰ 6.07* 10 ⁻⁸ 1.68*10 ⁻⁸ 1.67*10 ⁻⁹ 3.25*10 ⁻⁸ 7.03* 10 ⁻¹⁰ 8.87*10 ⁻¹⁰	1.83*10 ⁻²⁰ 5.24*10 ⁻²⁰ 5.87*10 ⁻²² 8.60*10 ⁻²⁰ 6.32*10 ⁻¹² 1.43*10 ⁻¹³ 9.25*10 ⁻²⁰ 1.02*10 ⁻¹⁶ 4.26*10 ⁻¹⁹ 5.52*10 ⁻¹⁸	8.678 7.956 10.233 7.441 -3.254 -1.027 5.630 2.872 5.942 4.722	8.66 8.62 12.34 11.15 9.08 8.80 8.75	3.59 3.03 -5.32 -3.19 2.16 2.43 1.95
291114 287112 283110 279108 301120 297118 293116 289114 285112 281110 277108	8.946 8.406 7.616 8.096 13.666 12.106 8.887 9.908 8.734 8.959 8.401	3.08*10 ⁻¹¹ 5.66*10 ⁻¹¹ 2.79*10 ⁻¹¹ 1.14*10 ⁻¹⁰ 6.07*10 ⁻⁸ 1.68*10 ⁻⁸ 1.67*10 ⁻⁹ 3.25*10 ⁻⁸ 7.03*10 ⁻¹⁰ 8.87*10 ⁻¹⁰ 3.84*10 ⁻¹⁰	1.83*10 ⁻²⁰ 5.24*10 ⁻²⁰ 5.87*10 ⁻²² 8.60*10 ⁻²⁰ 6.32*10 ⁻¹² 1.43*10 ⁻¹³ 9.25*10 ⁻²⁰ 1.02*10 ⁻¹⁶ 4.26*10 ⁻¹⁹ 5.52*10 ⁻¹⁸ 6.12*10 ⁻¹⁹	8.678 7.956 10.233 7.441 -3.254 -1.027 5.630 2.872 5.942 4.722 6.053	8.66 8.62 12.34 11.15 9.08 8.80 8.75	3.59 3.03 -5.32 -3.19 2.16 2.43 1.95
291114 287112 283110 279108 301120 297118 293116 289114 285112 281110 277108	8.946 8.406 7.616 8.096 13.666 12.106 8.887 9.908 8.734 8.959 8.401 9.002	3.08*10 ⁻¹¹ 5.66* 10 ⁻¹¹ 2.79*10 ⁻¹¹ 1.14*10 ⁻¹⁰ 6.07* 10 ⁻⁸ 1.68*10 ⁻⁸ 1.67*10 ⁻⁹ 3.25*10 ⁻⁸ 7.03* 10 ⁻¹⁰ 8.87*10 ⁻¹⁰ 3.84*10 ⁻¹⁰ 4.27* 10 ⁻¹¹	1.83*10 ⁻²⁰ 5.24*10 ⁻²⁰ 5.87*10 ⁻²² 8.60*10 ⁻²⁰ 6.32*10 ⁻¹² 1.43*10 ⁻¹³ 9.25*10 ⁻²⁰ 1.02*10 ⁻¹⁶ 4.26*10 ⁻¹⁹ 5.52*10 ⁻¹⁸ 6.12*10 ⁻¹⁹ 1.32*10 ⁻²⁰	8.678 7.956 10.233 7.441 -3.254 -1.027 5.630 2.872 5.942 4.722 6.053 8.666	8.66 8.62 12.34 11.15 9.08 8.80 8.75 8.93	3.59 3.03 -5.32 -3.19 2.16 2.43 1.95 0.67
291114 287112 283110 279108 301120 297118 293116 289114 285112 281110 277108 297120 293118	8.946 8.406 7.616 8.096 13.666 12.106 8.887 9.908 8.734 8.959 8.401 9.002 12.301	3.08*10 ⁻¹¹ 5.66* 10 ⁻¹¹ 2.79*10 ⁻¹¹ 1.14*10 ⁻¹⁰ 6.07* 10 ⁻⁸ 1.68*10 ⁻⁸ 1.67*10 ⁻⁹ 3.25*10 ⁻⁸ 7.03* 10 ⁻¹⁰ 8.87*10 ⁻¹⁰ 3.84*10 ⁻¹⁰ 4.27* 10 ⁻¹¹ 9.73*10 ⁻¹²	1.83*10 ⁻²⁰ 5.24*10 ⁻²⁰ 5.87*10 ⁻²² 8.60*10 ⁻²⁰ 6.32*10 ⁻¹² 1.43*10 ⁻¹³ 9.25*10 ⁻²⁰ 1.02*10 ⁻¹⁶ 4.26*10 ⁻¹⁹ 5.52*10 ⁻¹⁸ 6.12*10 ⁻¹⁹ 1.32*10 ⁻²⁰ 2.34*10 ⁻¹³	8.678 7.956 10.233 7.441 -3.254 -1.027 5.630 2.872 5.942 4.722 6.053 8.666 1.991	8.66 8.62 12.34 11.15 9.08 8.80 8.75 8.93	3.59 3.03 -5.32 -3.19 2.16 2.43 1.95 0.67

Vol. No.6, Issue No. 01, January 2017 www.ijarse.com

²⁸¹ 112	10.281	4.55* 10-9	1.35*10 ⁻¹⁵	1.593	10.35	-2.20
²⁷⁷ 110	10.301	6.11*10 ⁻⁹	3.55*10 ⁻¹⁵	1.042	10.89	-4.13
²⁷³ 108	9.901	3.90*10 ⁻⁹	1.55*10 ⁻¹⁵	1.604	9.61	-1.36
²⁹¹ 120	13.916	1.73* 10 ⁻⁶	8.32*10 ⁻¹²	-4.832		
²⁸⁷ 118	12.876	6.87*10 ⁻⁷	1.04*10 ⁻¹²	-3.521	13.11	-6.65
²⁸³ 116	11.866	1.40*10 ⁻⁷	7.70*10 ⁻¹⁴	-1.680	12.03	-5.01
²⁷⁹ 114	12.046	7.98*10 ⁻⁹	3.17*10 ⁻¹³	-3.057	12.27	-5.97
²⁷⁵ 112	9.38	2.63* 10-9	1.34*10 ⁻¹⁷	3.850	11.70	-5.33
²⁷¹ 110	10.871	1.69*10 ⁻⁷	2.59*10 ⁻¹⁴	-1.277	10.90	-4.05
²⁶⁷ 108	10.121	4.71*10 ⁻⁸	3.16*10 ⁻¹⁵	0.204	10.12	-2.64
²⁸⁹ 120	13.886	2.99* 10 ⁻⁶	7.27*10 ⁻¹²	-5.017		
²⁸⁵ 118	13.066	1.29*10 ⁻⁶	1.63*10 ⁻¹²	-3.995	13.30	-6.91
²⁸¹ 116	12.166	4.98*10 ⁻⁷	2.29*10 ⁻¹³	-2.713	12.39	-5.67
²⁷⁷ 114	12.326	1.02*10 ⁻⁶	6.62*10 ⁻¹³	-3.492	12.55	-6.48
²⁷³ 112	9.403	6.52* 10-9	1.41*10 ⁻¹⁷	3.430	11.72	-5.34
²⁶⁹ 110	11.586	6.71*10 ⁻⁷	2.46*10 ⁻¹³	-2.870	11.28	-4.88
²⁶⁵ 108	10.587	1.10*10 ⁻⁷	1.78*10 ⁻¹⁴	-0.927	10.47	-3.55

IV. SUMMARY OF OUR RESULTS

We have studied some α -decay chains of the superheavy nuclei $^{311,309,305,303}120$, $^{301,297,291,289}120$ and $^{320,326}128$. The calculation are completed using the preformed cluster decay model of Gupta and collaborators [33, 34, 35, 36, 37, 38], based on the Quantum Mechanical Fragmentation Theory (QMFT). The calculated half lives and the Q-values are compared with the recent calculation based on Generalized Liquid Drop Model (GLDM). Comparison shows the same trends in both the calculations. The maximum pre-formation probability of the order 10^{-6} has been found for the parents of the $^{289}120$ α -decay chain. We conclude that the stability of the superheavy nuclei based on their half-lives and Q-value are found for the nuclei at (Z=112, N=161,163), (Z=114, N=171,178,179) or at (Z=124, N=194). Cluster decays are also studied for the $^{301}120$ α -decay chain. The shell stabilizing effects appears in 10 Be decay of the parent $^{289}114$ nucleus. A good indication seen in the cluster radioactivity calculation, decay of 34 Si from parent $^{301}120$, gives a deformed magic daughter (Z=106, N=161), and 49 Ca from the same parent gives (Z=100, N=152).

REFERENCES

- [1] M.A. Stoyer, Nature 442, 876 (2006); also reference therein.
- [2] S. Hofmann et al., Nucl. Phys. A 734, 93 (2004).
- [3] H. Hofman and G. M"unzenberg, rev. Mod. Phys.72, 733 (2000).
- [4] D. Ackermann, Nucl. Phys. A 787, 353C (2007).

Vol. No.6, Issue No. 01, January 2017

www.ijarse.com

- [5] Yu. Ts. Oganessian et al., Phys. Rev. C. 74,044602 (2006); and reference therin.
- [6] Yu. Ts. Oganessian et al., Phys. Rev. C70, 064609 (2004); Phys. Rev. C 71, 029902 (E)(2005).
- [7] K. Morita et al., J. Physics. Soc. Jpn. 73, 2593 (2004).
- [8] Yu. Ts. Oganessian et al., Phys. Rev. C69, R021601 (2004).
- [9] C Samanta, P Roy Chowdhruy and D N Basu, Nuclear Physics A 789, 142-154 2007).
- [10] G. Audi and A. H. Wapstra, Nucl. Phys. A595,4 (2003).
- [11] P. M"oller, J. R. Nix, W. D. Myers and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (2003).
- [12] W D Myers and W J Sewiatecki, Nucl. Phys. A81, 1 (1966).
- [13] A Sobiczewski, F A Gareev, and B N Kalinkin, Phys. Lett. 22, 500 (1966).
- [14] H Meldner, Ark. Fys. 36, 593 (1967).
- [15] S G Nilsson et al., Nucl. Phys. A115, 545(1968).
- [16] U Mosel, and W Greiner, Z. Phys. 222, 261(1969).
- [17] J Grumann, U Mosel, B Frink, and W Greiner, Z. Phys. 228, 371(1969).
- [18] S G Nilsson, C F Tsang, A Sobiczewski, Z Szymanski, S Wyeech, C Gustafsson, I L Lamm, P M"oller, and B Nilsson, Nucl. Phys. A131, 1(1969).
- [19] E O Fiset and J R Nix, Nucl. Phys. A193, 647(1972).
- [20] J Randrup, S E Larsson, P M"oller, A Sobiczewski, and A Lukasiak, Phys. Scr. 10A, 60(1974).
- [21] A Sobiczewski, Phys. of Particles and Nuclei 25, 295-311(1994).
- [22] R Smolanczuk, J Skalski, and A Sobiczewski, Phys. Rev. C52, 1871-1880(1995).
- [23] P M"oller, and J R Nix, J. Phys. G: Nucl. Part. Phys. 20, 1681-1747(1994).
- [24] K Rutz, M Bender, T B'urvenich, T Schilling, P G Reinhard, J A Maruhn and W greiner, Phys. Rev. C56, 238-243(1997).
- [25] S Cwiok, J Dobaczewski, P H Heenen, PMagierski, and W Nazarewicz, Nucl. Phys. A611, 211-246(1996).
- [26] S Hofmann, Rep. Prog. Phys. 61, 639(1998).
- [27] Y T Oganessian et al., Phys. Rev. Lett. 83, 3154(1999).
- [28] Y T Oganessian et al., Phys. Rev. C62, 041604(R)(2000).
- [30] S Cwiok, and A Sobiczewski, Z. Phys. A342, 203(1992).
- [31] R Smolanczuk, Phys. Rev. C56, 812(1997).
- [32] Sushil Kumar, M Balasubramanium, R K Gupta, G M"unzenberg, and W Scheid, J Phys. G: Nucl. Part. Phys. 29, 625-639(2003).
- [33] S.S. Malik and R.K. Gupta, Phys. Rev. C 39 (1989) 1992.
- [34] R.K. Gupta, W. Scheid, and W. Greiner, J. Phys. G 17 (1991) 1731.
- [35] S. Kumar and R.K. Gupta, Phys. Rev. C 49 (1994) 1922.
- [36] R.K. Gupta and W. Greiner, Int. J. Mod. Phys. E 3 (1994, Supp.) 335.
- [37] R.K. Gupta, in Heavy Elements and Related New Phenomena, Eds. W. Greiner and R.K. Gupta, World Scientific, Singapore, 1999, Vol. II, p. 730.
- [38] R.K. Gupta, Phys. Rev. C 21 (1980) 1278.

Vol. No.6, Issue No. 01, January 2017

www.ijarse.com

- [39] R.K. Gupta, C. P^arvulescu, A. S*andulescu and W. Greiner, Z. Physik A283 (1977) 217.
- [40] R.K. Gupta, Proc. 5th Int. Conf. on Nuclear Reaction Mechanisms, Varenna 1988, p.416.
- [41] R.K. Gupta, ibid [148], Vol. II, p. 730.
- [42] S Hofmann, and G M"unzenberg, Rev. Mod. Phys. 72, 733(2000).
- [43] G Royer, J Phys. G: Nucl. Part. Phys. 26, 1149(2000).
- [44] Yu A Lazarev et al., Phys. Rev. C54, 620(1996).