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ABSTRACT

In this paper we study the H-adherence based in terms of hyperclosure, of a filterbase obtain characterizations
of some of the spaces in terms of H-adherence. Also variant of Minimal-P spaces and its relationships with
other axioms is investigated.
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I INTRODUCTION

The adherence of a filterbase has been used to characterize some of the well known topological spaces such as
compact spaces, H-closed spaces and various minimal topological spaces. Various forms of adherence of
filterbase have been discussed in literature and these have found much importance place in topology. The
minimal and maximal topologies with respect to a certain topological property in the lattice of topologies LT(X)
defined on a set X partially ordered by inclusion have been of keen interest of topologists. In [1] Berri et.al, have
given a survey on the considerable amount of work done in the field of minimal topological spaces. In [2]
Herrington, introduced u-adherence of a filterbase and characterized Urysohn closed and Minimal Urysohn
spaces in terms of u-adherence.

In this paper we study a variant of adherence based on hyperclosure of a set, namely H-adherence of a filterbase
and characterize some spaces in terms of H-adherence. Also we investigate the class of minimal topological
spaces with respect to the separation axiom Sy, and the role of H-adherence in characterization of these spaces.

Notations: Throughout the paper, by a space X we mean a topological space, N5(x) is the filterbase of J-
neighborhoods of some xe X, cl5 (A) denotes the closure of the subset A = X, X\A the complement of A in X
and Z denotes the set of integers.

Definition 1.1: (1) A filter base B on a space X is said to be an open filter if each member of B is an open set.

(2) A point x is called a adherent point or accumulation point or cluster point of a filterbase B denoted as x e
adh B, if for each open sets U containing x and each Fin B, FN U = &.
(3) Afilterbase B #-converges to x if for each open set U containing x there exists an F in B such that cl(F) c U.

(4) A point x is called a 9-adherent point of a filterbase B denoted as x e adh,y B, if for each open sets U
containing x and each F in B, F N cl(U) = &.

Definition 1.2 [3]: If X is a space, A X, and xeX, then
(1) ker(A) = n{U:UeJand A c U}.
(2) < x> =cl{x} m ker{x}.

(3) cly(A) = {x € X : For each open set U containing x and each open set V containing A, cl(U) N cl(V) = &}
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(4) Ais hyperclosed if A= cly(A).

Definition 1.3 [4]:(1) An open filterbase B is a Urysohn filterbase if and only if for each x not in adherence of
B, there is an open set U containing x and V in B such that, cl(U) N cl(V) = &.

(2) A pair of open sets G and H containing a point X is called an ordered pair denoted by
(G, H)if,x e Gccl(G) cH.

(3) For any subset A < X, cl,(A) = {x € X: For each ordered pair of open sets (G, H) containing x, A N cl(H) =
%

(4) A filterbase B u-converges to x if for each ordered pair of open sets (G, H) containing x there exists an F in
B such that F < cl(H).

(5) A point x is called a u-adherent point or u-accumulation point of a filterbase B denoted as x € adh,B, if for
each ordered pair of open sets (G, H) containing x and each F in B, F N cl(H) # <.

(6) An Urysohn space X is Urysohn-closed provided X is a closed set in every Urysohn space in which it can be
embedded.

(7) A space (X, 3) is said to be Minimal Urysohn if J is Urysohn and there exists no Urysohn topology on X
strictly weaker than 3.

Definition 1.4 [5]: A space X is said to be,

(1) Urysohn (T,,) space if for every pair of points x and y in X there exist neighborhoods U of x and V of y
such that cl(U) N cl(V) = &.

(2) Sy, space if for every pair of points x and y in X, whenever cl{x} = cl{y} then there exist neighborhoods U
of x and V of'y such that cl(U) N cl(V) = .

(3) S, space if for every pair of points x and y in X, whenever cl{x} = cl{y} then there exist disjoint
neighborhoods containing them.

(4) S, space if for every pair of points x and y, whenever x has a neighborhood not containing y, then y has a
neighborhood not containing x.

Definition 1.5: A space X is said to be,

(1) @ - point paracompact [6] if for each open covering 2 of X and each x € X there exists an open refinement
V" of 2 and a 6-open set U containing x which intersects with only finite members of V..

(2) H(i) [2] if every open filter on X has non void adherence.
(3) U(i) [2] if every Urysohn filterbase on X has non void adherence.

The following results will be used in the next section.

Lemma 1.6: A filter F 8-adheres to a point x if and only if there exists a finer filter G which 6-converges to the
point x.
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Lemma 1.7 [7]: A space X is S; if and only if one of the following conditions is satisfied:
(@) If Uis openin X and x € U then cl{x}c U.

(b) If X,y € X, then cl{x} = cl{y} or cl{x} N cl{y} = <.

Lemma 1.8: For a space X and x, y € X, following statements are equivalent:;

(@) X is Sy

(b) Either, <x> = <y> or cly{x} N cly{y} = 9.

Lemma 1.9: For aspace X and x, y € X, <x>=<y> if and only if cl{x} = cl{y}.

Lemma 1.10: Let X be Urysohn space. Then X is Urysohn closed if and only if every open filterbase has u-
adherent point.

Lemma 1.11: X is U(i) if and only if every open filterbase has u-adherent point.

11 HHADHERNCE

First we give the relationships between H-adherence and some forms of adherence of filterbases known in
literature. For this purpose, we prove that u-closure and hyper-closure of a set coincide.

Lemma 2.1: For a space X and a subset A of X, cl,A = cl4A.

Proof: Let xeX, x e clyA\cl,A. Then there exists an ordered pair of open sets (G, H) containing x such that, A
N cl(H) = &. Then, V = X\cl(H) is an open set containing A, suvh that cl(V) N H= . As (G, H) is an ordered
pair containing X, we have cl(G) N cl(V) = & and this implies that x ¢ cl4A which is a contradiction.

Conversely, let p e cl,A\S. Then there exists an open set U containing p and an open set V containing A such
that, cl(U) N cl(V) = . Thus (U, X\cl(V)) is an ordered pair of open sets containing p such that V N (X\cl(V))
= . Therefore, A N (cl(X)\cl(V)) = & which implies xgcl,A which is a contradiction.

Definition 2.2: A point x is called a H-adherent point of a filterbase B denoted as x € adhyB, if for each open
set Uy, containing x and each open set Vg containing F, cl(Uy) N cl(VE) = & for all F in B.

Theorem 2.3: For a space X and filterbase B of X the following hold:
(@) adhyB =~ {cl4(F)| F € B}.
(b) adh,B = adhyB.

Proof: Part (a) is straightforward. Part (b) follows from part (a) and Lemma 2.1, since adh,B = n {cl,(F)| F €

B}.
Theorem 2.4: For a space X and a subset A of X, the following are equivalent:
(@) x € cly(A).

(b) There exists a filter F such that A € F and x € adhy F.
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(c) There exists a filter F which 6-converges to both x and A.
(d) There exists a filter F which #-adheres to both x and A.

Proof: (a) = (b) Let x e cly(A) and B ={A} be a filterbase and F (B) = {F | A — F } be the filter generated by
B. Now xe adhy B which implies xe adhy F (B).

(b) = (c) Let F be filter such that A € F and x € adhy F. Let P be a filterbase where, P = {cl(Ug) | U are open
sets containing F for all F in F}. Now as x € adhy F the G(P) the filter generated from the filterbase P, 6-adheres
to x. By Lemma 1.6 there exists a finer filter R which 6-converges to x. As A e F, {cl(Up) | Ua are open sets
containing A} — P — G < R. Hence the filter R 6-converges to A also.

(c) = (d) is obvious
(d) = (c) follows from Lemma 1.6

(c) = (a) Let F be a filter which 8-converges to both x and A. Then for every open set U containing x and every
open set V containing A there exists F; and F, in F such that F; < cl(U) and F, < cl(V). Since F is a filter F; N
F,e Fand Fy N F, < cl(V) N cl(U) and hence cl(V) N cl(U) # . Thus x e cly(A).

Corollary 2.5: A set A of X is hyperclosed if and only if A contains all the H-adherent points of every filter
containing A as a member.

As it is known that every H(i) space is U(i), we give a condition in terms of H-adherence of open filters for
which the converse holds.

Lemma 2.6: If X is 6-point paracompact then every open filter with H-adherent point has an adherent point.

Proof: Let X be a 6-point paracompact space and F be an open filter with an H-adherent point x and no adherent
point. Then, & = {X\cl(F): F € F} is a directed open cover of X and so there exists an open refinement V" of <
and a 0-open set K containing x which intersects with only finite members of V. LetP=u{U e V: UN K = J}.
Hence, P N K =&. Now, X\P < w{U € V: U N K # &} and as V' is an open refinement of @ there exists

finitely many O;in 9 such that U{U € V: U N K # J} U?=1 { O;i: O; € « }. Since A« is an open directed

cover there exists some Fe F such that U?:l {0i: Oj e w} < X\cl(F). Thus X\P < X\cl(F) which implies cl(F)

< P. Therefore we have, cl(F) N K = & and as K is a 0-open set, by definition there exists an open set Q
containing x such that cl (Q) < K. So, c¢l(Q) N cl(F) = & and as F being a member of an open filter is an open
set we have x ¢ cly(F) which implies that x is not an H-adherent point of X, a contradiction.

Theorem 2.7: A 6-point paracompact space X is H(i) if and only if it is U(i).

Proof: As H(i) space always implies U(i), the result follows from Lemma 2.6 and Lemma 1.11 above.

111 MINIMAL S, SPACES

Definition 3.1[1] : Given a topological property P in the lattice LT(X) on a set X a topology is said to be
minimal if every weaker topology in LT(X) does not possess that property.

In this context of Minimal spaces we define Minimal S,,, space and characterize them in terms of H-adherence,
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Definition 3.2: A topological space (X, 3) is said to Minimal Sy, space if 3 is the minimal element of the lattice
LT(X) which is Sy,

Remark 3.3 [5]: The separation axioms like S,,, which are non T, are vacuously satisfied by the indiscrete
topology and in such cases of separation axioms the study of minimal topological in the lattice LT(X) becomes
trivial. So it becomes necessary to restrict the interval of topologies in the lattice LT(X) to avoid such
circumstances.

So to each p € LT(X) we associate the interval as in [2], L, = {3 € LT(X): at(p) < 3< 5 } where at(p) denotes

the topology on X generated by the sets {X\cl,(P) : P is a finite subset of X} and 5 denotes the closure of p in
the power set 2%

Remark 3.4 [5]: (1) If pe LT(X) then cly{x}=cl {x} = Clg {x} for all xeX.

(2) If 3, pe Lt(X) then 3 € L, if and only if cl {x}= cl5{x} for all xeX.
(3) If p is S; and if X can be written as finite disjoint point closures then for each point xe X, cl{x} at(p) which

leads to the consequence at(p) = p = p and thus L, = {p}. To avoid this condition of triviality, in the further

Section we assume that p € LT(X) is an S, topology such that X can be written as infinite union of disjoint point
closures.

As every pair of non-empty at(p) - open sets intersect, at(p) cannot be S,,. So the restriction L, is well defined
for characterizing minimal S,., spaces.

Lemma 3.5: A space (X, 3) is S,y if and only if it is S; and adhy N5(x) = cl{x} for all xe X.

Proof: Let (X, 3) be an Sy, space. Hence it is S; also. Let x € X and by Lemma 1.7 in an S; space c{x} c V
for all Ve N5(x). So, cl{x} < clyV for all Ve Nx(x) and thus cl{x}< adhy N5(x). Now let us suppose some y e
X be such that y € adhy Ns(X)\cl{x}. Now y e adhy Ns(x) implies that y e cly (V) for all Ve Nx(x). Since V is
an open set so it implies that for all Ue Nx(y), cl(U) N cl(V) = @ for all VeN 5(x). As cl{x}= cl{y} and the
space is Sy, it is not possible. Thus it follows that adhy N5(x) = cl{x} for all xe X as x was chosen arbitrarily.
Conversely, suppose (X, 3J) is S; and adhy N5(x) = cl{x} for all x € X. Let x and y be such that <x> = <y>.
Then by Lemma 1.9 we have cl{x}= cl{y}. Since space X is S; by Lemma 1.7 cl{x} N cl{y} = &. Thus adhy
N5(x) N adhy Ns(y)= & which implies cly{x} N cly{y} = &. So by Lemma 1.8 the space (X, J) is Syy.

Theorem 3.6: Let 3 € L, be Sy, Then the topology 3 is Minimal S, if and only if given any J-open filter F
on X such that adhys) F = ¢l 5{x} for some x € X, is convergent

(necessarily to every point of cl+{x}).

Proof: Suppose 3 is Minimal S,, and F is a 3-open filter on X such that adhy)F = cls{x} for some x € X and
which is not convergent to some point z € cl s{x}. Since 3 is S,, and hence S; so cl 5{x}= cl s{z}. So we can
assume that F is not convergent to the point x.

Let us consider the topology ) generated by the neighborhood base,

s U,whereU e N_(y),y = X
U (y)={

Then 3 is a topology which is strictly coarser than 3. We shall prove that § is an Sy, in L,

UuF,whereUe N _ (yY)andFeF,y =X

(1) 8 e L, : Since adhyF = cl{x} and y¢ cl+{x} then y¢ adhyF. So there exists a Ve N5(y) and F € F such
that cI(V) N cl(F) = <. Since cl{y}c cl(V) thus F < X\cl{y}. Therefore X\cl-{y}< F and hence Ny,(x) = F.
Als0, if Ny (X) < F then Ny, (X) < Ns(x) for all x € X which implies § € L.
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(2)_81is Sy, : Now lety, z e X be distinct points from given x such that y¢ cls{z}. Thus ye cls{z} and since 3
iS Sy, there exists I -open sets U;e N5 (y) and V; € N 5 (2) such that,

cls (U Nels (V) =C.

Case I: If x¢ cl{y} and xe cl 5 {z} theny, z ¢ cl 5{x}. Theny, z ¢ adhyF and so there exists Fy, F, € F and
U, € N x(y) and V, € N5(2) such that, cl5(Uy) N cls(Fy) = @ and cls(Vy) N cls(F,) = . Now since cls{x} #
cls{y} and cl5{x} # cls{z} and 3 is S,, there exists Use Nx(y),Vs € Nx(z) and W3, W, € Nx(X) such that,
cl5(Us) N cls (Wy) = D and cl5(V3) N clx(W,) = J. Then Oy = U; N U, N Uz and O, = V; N V,N V3 are 3-open
sets such that cl5(Oy) N cl5(Oz) = &. Since cls(O,) = cl5(0y) and cls(Oz) = cl5(Oz) we have cls(Oy) N cl3(02) =
Q.

Case Il: If x e cls{y} then cls{x}= cls{y}= adhyF. Since z ¢ cls{y} there exist V, € N5(z) and F;e F such
that cl5(V,) N cls(F3) = &. Since cls{x} # cls{z} W3e N x(x) and Vs € N 5(z) such that, cls(W3) N cls (Vs) =
. Then Py = W5 U Fz and P, = V, N Vs are §-open sets such that cls (Py) N cls (Pz) = &. Since cls(P,) = cls
(Py) and cls(Pz) = cl5(Pz) we have cls(Py) N cls(P2) = <.

Thus & is an Sy, topology coarser than 3 in L, which is a contradiction and the result follows.

Conversely, let every J-open filter F on X such that adhyr F = cl5{x} for some x € X, is convergent. Let 3*e
L, be Sy, such that 3* < 3. Let x € U for some set U € 3. Then adhy+ Ns«(X) = ¢l s{x}and so 3-open filter
Ns+(X) is I-convergent to X. So N 5(X) < N 5+(X) and hence U € 3*. As U was chosen arbitrarily we have 3* =
3 and the result follows.

As a consequence of Theorem 3.6 we obtain that every Minimal Sy, space is U(i).

Corollary 3.7: If 3 € L, is Minimal Sy, then it is U(i).

Proof: Suppose there exists an open filter F such that adhyF = &. Then for each x e X there exists a Ve
Nx(x) and F € F such that cl 5(V) N cl 5(F) = &. On the other hand since cls{x}< V then X\cl s{Xx}< F. Thus
Nap)(X) = F and N5(x) & F for each x € X. Now fix x € X and & be defined as in Theorem 3.6 above. Then & €
L, and 8 < 3. For proving d is Sz, We shoe that F contains an open filter F* such that adhy)F * = cls{x}.

Let F* ={F € F: cl5(U) N cl5(F) # @ for all Ue N 5(x)}. Then F* is a proper sub-filter of F and cls{x}c
adhys)F*. Now let ye cls{x} and as 3 is S, there exists 3 -open sets U, e Ns(x) and V; € Nx(y) such
that, cl 5(Uy) N cl 5 (V1) = . Since ye adhyq)F there exist Wie N 5(y) F1 € F such that, cl 5(Wy) N cl 5(Fy) =
. Then O =W;N V;yand G = Uy U Fy are such that cl5(0) N cl5(G) = & where O € N1(y) and G € F*. So y¢
adhys)F* and hence adhys)F* = cls{x}. Then by similar steps as in Theorem 3.6 & is Sy, which implies that 3
is not Minimal S, which is a contradiction and the result follows.
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