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ABSTRACT 

In this paper we study the H-adherence based in terms of hyperclosure, of a filterbase obtain characterizations 

of some of the spaces in terms of H-adherence. Also variant of Minimal-P spaces and its relationships with 

other axioms is investigated.
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I INTRODUCTION 

The adherence of a filterbase has been used to characterize some of the well known topological spaces such as 

compact spaces, H-closed spaces and various minimal topological spaces. Various forms of adherence of 

filterbase have been discussed in literature and these have found much importance place in topology. The 

minimal and maximal topologies with respect to a certain topological property in the lattice of topologies LT(X) 

defined on a set X partially ordered by inclusion have been of keen interest of topologists. In [1] Berri et.al, have 

given a survey on the considerable amount of work done in the field of minimal topological spaces. In [2] 

Herrington, introduced u-adherence of a filterbase and characterized Urysohn closed and Minimal Urysohn 

spaces in terms of u-adherence. 

 

In this paper we study a variant of adherence based on hyperclosure of a set, namely H-adherence of a filterbase 

and characterize some spaces in terms of H-adherence. Also we investigate the class of minimal topological 

spaces with respect to the separation axiom S2½ and the role of H-adherence in characterization of these spaces.  

 

Notations: Throughout the paper, by a space X we mean a topological space, N(x) is the filterbase of -

neighborhoods of some xX, cl (A) denotes the closure of the subset A  X, X\A the complement of A in X 

and Z denotes the set of integers. 

 

Definition 1.1:  (1) A filter base B on a space X is said to be an open filter if each member of B is an open set. 

(2) A point x is called a adherent point or accumulation point or cluster point of a filterbase B denoted as x  

adh B, if for each open sets U containing x and each F in B, F ∩ U  . 

(3) A filterbase B θ-converges to x if for each open set U containing x there exists an F in B such that cl(F)  U. 

(4) A point x is called a θ-adherent point of a filterbase B denoted as x  adhθ B, if for each open sets U 

containing x and each F in B, F ∩ cl(U)  . 

 

Definition 1.2 [3]: If X is a space, A  X, and xX, then  

(1) ker(A) =  { U : U and A  U}. 

(2)  x  = cl{x}  ker{x}. 

(3) clH(A) = {x  X : For each open set U containing x and each open set V containing A, cl(U) ∩ cl(V)  }  
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(4) A is hyperclosed if A= clH(A). 

 

Definition 1.3 [4]:(1) An open filterbase B is a Urysohn filterbase if and only if for each x not in adherence of 

B, there is an open set U containing x and V in B such that,  cl(U) ∩ cl(V) = . 

(2) A pair of open sets G and H containing a point x is called an ordered pair denoted by  

(G, H) if, x  G  cl(G)  H. 

(3) For any subset A  X, clu(A) = {x  X: For each ordered pair of open sets (G, H) containing x, A ∩ cl(H)  

}. 

 

(4) A filterbase B u-converges to x if for each ordered pair of open sets (G, H) containing x there exists an F in 

B such that F  cl(H). 

(5) A point x is called a u-adherent point or u-accumulation point of a filterbase B denoted as x  adhuB, if for 

each ordered pair of open sets (G, H) containing x and each F in B, F ∩ cl(H)  . 

 

(6) An Urysohn space X is Urysohn-closed provided X is a closed set in every Urysohn space in which it can be 

embedded. 

(7) A space (X, ) is said to be Minimal Urysohn if  is Urysohn and there exists no Urysohn topology on X 

strictly weaker than . 

 

Definition 1.4 [5]: A space X is said to be,  

(1) Urysohn (T2½) space if for every pair of points x and y in X there exist neighborhoods U of x and V of y 

such that cl(U) ∩ cl(V) = .  

(2) S2½ space if for every pair of points x and y in X, whenever cl{x}  cl{y} then there exist neighborhoods U 

of x and V of y such that cl(U) ∩ cl(V) = .  

(3) S2 space if for every pair of points x and y in X, whenever cl{x}  cl{y} then there exist disjoint 

neighborhoods containing them. 

(4) S1 space if for every pair of points x and y, whenever x has a neighborhood not containing y, then y has a 

neighborhood not containing x. 

Definition 1.5: A space X is said to be,  

(1) θ - point paracompact [6] if for each open covering U of X and each x  X there exists an open refinement 

V of U and a θ-open set U containing x which intersects with only finite members of V. 

(2) H(i) [2] if every open filter on X has non void adherence. 

(3) U(i) [2] if every Urysohn filterbase on X has non void adherence. 

The following results will be used in the next section. 

 

Lemma 1.6: A filter F θ-adheres to a point x if and only if there exists a finer filter G which θ-converges to the 

point x. 



 

48 | P a g e  
 

Lemma 1.7 [7]: A space X is S1 if and only if one of the following conditions is satisfied: 

(a) If U is open in X and x  U then cl{x} U. 

(b) If x, y  X, then cl{x} = cl{y} or cl{x}  cl{y} = . 

Lemma 1.8: For a space X and x, y  X, following statements are equivalent: 

(a) X is S2½. 

(b) Either, <x> = <y> or clH{x}  clH{y} = . 

Lemma 1.9: For a space X and x, y  X, <x> = <y> if and only if cl{x} = cl{y}. 

Lemma 1.10: Let X be Urysohn space. Then X is Urysohn closed if and only if every open filterbase has u-

adherent point. 

Lemma 1.11: X is U(i) if and only if every open filterbase has u-adherent point. 

 

II H-ADHERNCE 

 

First we give the relationships between H-adherence and some forms of adherence of filterbases known in 

literature. For this purpose, we prove that u-closure and hyper-closure of a set coincide. 

Lemma 2.1: For a space X and a subset A of X, cluA = clHA. 

Proof: Let xX, x  clHA\cluA. Then there exists an ordered pair of open sets (G, H) containing x such that, A 

∩ cl(H) = . Then, V = X\cl(H) is an open set containing A, suvh that cl(V) ∩ H = . As (G, H) is an ordered 

pair containing x, we have cl(G) ∩ cl(V) =  and this implies that x  clHA which is a contradiction.  

Conversely, let p  cluA\S. Then there exists an open set U containing p and an open set V containing A such 

that, cl(U) ∩ cl(V) = . Thus (U, X\cl(V)) is an ordered pair of open sets containing p such that V ∩ (X\cl(V)) 

= . Therefore, A ∩ (cl(X)\cl(V)) =  which implies xcluA which is a contradiction. 

Definition 2.2: A point x is called a H-adherent point of a filterbase B denoted as x  adhHB, if for each open 

set Ux containing x and each open set VF containing F, cl(Ux) ∩ cl(VF)   for all F in B. 

 

Theorem 2.3: For a space X and filterbase B of X the following hold: 

(a) adhHB =  {clH(F)| F  B}. 

(b) adhuB = adhHB. 

Proof: Part (a) is straightforward. Part (b) follows from part (a) and Lemma 2.1, since adhuB =  {clu(F)| F  

B}. 

Theorem 2.4: For a space X and a subset A of X, the following are equivalent: 

(a) x  clH(A). 

(b) There exists a filter F such that A  F and x  adhH F. 



 

49 | P a g e  
 

(c) There exists a filter F which θ-converges to both x and A. 

(d) There exists a filter F which θ-adheres to both x and A. 

Proof: (a)  (b) Let x  clH(A) and B ={A} be a filterbase and F (B) = {F | A  F } be the filter generated by 

B. Now x adhH B which implies x adhH F (B). 

(b)  (c) Let F be filter such that A  F and x  adhH F. Let P be a filterbase where, P = {cl(UF) | UF are open 

sets containing F for all F in F}. Now as x  adhH F the G(P) the filter generated from the filterbase P, θ-adheres 

to x. By Lemma 1.6 there exists a finer filter R which θ-converges to x. As A  F, {cl(UA) | UA are open sets 

containing A}  P  G  R. Hence the filter R θ-converges to A also.  

(c)  (d) is obvious 

(d)  (c) follows from Lemma 1.6 

(c)  (a) Let F be a filter which θ-converges to both x and A. Then for every open set U containing x and every 

open set V containing A there exists F1 and F2 in F such that F1  cl(U) and F2  cl(V). Since F is a filter F1 ∩ 

F2  F and F1 ∩ F2  cl(V) ∩ cl(U) and hence cl(V) ∩ cl(U) ≠ . Thus x  clH(A). 

Corollary 2.5: A set A of X is hyperclosed if and only if A contains all the H-adherent points of every filter 

containing A as a member. 

As it is known that every H(i) space is U(i), we give a condition in terms of H-adherence of open filters for 

which the converse holds. 

Lemma 2.6: If X is θ-point paracompact then every open filter with H-adherent point has an adherent point. 

Proof: Let X be a θ-point paracompact space and F be an open filter with an H-adherent point x and no adherent 

point. Then, U = {X\cl(F): F  F} is a directed open cover of X and so there exists an open refinement V of U 

and a θ-open set K containing x which intersects with only finite members of V. Let P = {U  V: U ∩ K = }. 

Hence, P ∩ K = . Now, X\P   {U  V: U ∩ K ≠ } and as V is an open refinement of U there exists 

finitely many Oi in U such that {U  V: U ∩ K ≠ }  
n

i=1
 { Oi : Oi  U }. Since U is an open directed 

cover there exists some F F such that 
n

i=1
 {Oi : Oi  U }  X\cl(F). Thus X\P  X\cl(F) which implies cl(F) 

 P. Therefore we have, cl(F) ∩ K =  and as K is a θ-open set, by definition there exists an open set Q 

containing x such that cl (Q)  K. So, cl(Q) ∩ cl(F) =  and as F being a member of an open filter is an open 

set we have x  clH(F) which implies that x is not an H-adherent point of X, a contradiction. 

Theorem 2.7: A θ-point paracompact space X is H(i) if and only if it is U(i). 

Proof: As H(i) space always implies U(i), the result follows from Lemma 2.6 and Lemma 1.11 above. 

 

III MINIMAL S2½ SPACES 

Definition 3.1[1] : Given a topological property P in the lattice LT(X) on a set X a topology is said to be 

minimal if every weaker topology in LT(X) does not possess that property. 

 

In this context of Minimal spaces we define Minimal S2½ space and characterize them in terms of H-adherence, 
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Definition 3.2: A topological space (X, ) is said to Minimal S2½ space if  is the minimal element of the lattice 

LT(X) which is S2½. 

 

Remark 3.3 [5]: The separation axioms like S2½ which are non T1 are vacuously satisfied by the indiscrete 

topology and in such cases of separation axioms the study of minimal topological in the lattice LT(X) becomes 

trivial. So it becomes necessary to restrict the interval of topologies in the lattice LT(X) to avoid such 

circumstances. 

 So to each ρ  LT(X) we associate the interval as in [2], Lρ = {  LT(X): at(ρ) ≤ ≤  } where at(ρ) denotes 

the topology on X generated by the sets {X\clρ(P) : P is a finite subset of X} and   denotes the closure of ρ in 

the power set 2
X
.  

 

Remark 3.4 [5]: (1) If ρ LT(X) then clat(ρ){x}= clρ{x} =  cl x


 for all xX. 

(2) If , ρ Lt(X) then   Lρ  if and only if clρ{x}= cl{x} for all xX. 

(3) If ρ is S1 and if X can be written as finite disjoint point closures then for each point xX, cl{x} at(ρ) which 

leads to the consequence at(ρ) = ρ =   and thus Lρ = {ρ}. To avoid this condition of triviality, in the further 

Section we assume that ρ  LT(X) is an S1 topology such that X can be written as infinite union of disjoint point 

closures.  

  

As every pair of non-empty at(ρ) - open sets intersect, at(ρ) cannot be S2½. So the restriction Lρ is well defined 

for characterizing minimal S2½ spaces. 

 

Lemma 3.5: A space (X, ) is S2½ if and only if it is S1 and adhH N(x) = cl{x} for all xX. 

Proof: Let (X, ) be an S2½ space. Hence it is S1 also. Let x  X and by Lemma 1.7 in an S1 space cl{x}  V 

for all V N(x). So, cl{x}  clHV for all V N(x) and thus cl{x} adhH N(x). Now let us suppose some y  

X be such that y  adhH N(x)\cl{x}. Now y  adhH N(x) implies that y  clH (V) for all V N(x). Since V is 

an open set so it implies that for all U N(y), cl(U) ∩ cl(V)   for all VN (x). As cl{x} cl{y} and the 

space is S2½, it is not possible. Thus it follows that adhH N(x) = cl{x} for all xX as x was chosen arbitrarily. 

Conversely, suppose (X, ) is S1 and adhH N(x) = cl{x} for all x  X. Let x and y be such that <x>  <y>. 

Then by Lemma 1.9 we have cl{x} cl{y}. Since space X is S1 by Lemma 1.7 cl{x} ∩ cl{y} = . Thus adhH 

N(x) ∩ adhH N(y)=  which implies clH{x}∩ clH{y} = . So by Lemma 1.8 the space (X, ) is S2½. 

 

Theorem 3.6: Let   Lρ be S2½. Then the topology  is Minimal S2½ if and only if given any -open filter F 

on X such that adhH() F = cl {x} for some x  X, is convergent 

(necessarily to every point of clT{x}). 

Proof: Suppose  is Minimal S2½ and F is a -open filter on X such that adhH()F = cl{x} for some x  X and 

which is not convergent to some point z  cl {x}. Since  is S2½ and hence S1 so cl {x}= cl {z}. So we can 

assume that F is not convergent to the point x.   

Let us consider the topology δ generated by the neighborhood base, 

 
U, where U N (y), y x

U F, where U N (y)and F
’

,
U y

y x





 
 

    F

.  

Then δ is a topology which is strictly coarser than . We shall prove that δ is an S2½ in Lρ. 

 

(1) δ  Lρ : Since adhH()F = cl{x} and y clT{x} then y adhH()F. So there exists a V N(y) and F  F such 

that cl(V) ∩ cl(F) = . Since clT{y} cl(V) thus F  X\clT{y}. Therefore X\clT{y} F and hence Nat(ρ)(x)  F. 

Also, if Nat(ρ)(x)  F then Nat(ρ)(x)  Nδ(x) for all x  X  which implies δ  Lρ. 
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(2) δ is S2½ : Now let y, z  X be distinct points from given x such that y clδ{z}. Thus y cl{z} and since  

is S2½ there exists  -open sets U1 N (y) and V1  N  (z) such that,  

cl  (U1) ∩ cl  (V1) = . 

Case I: If x clT{y} and x cl  {z} then y, z  cl {x}. Then y, z  adhH()F and so there exists F1, F2  F and 

U2  N (y) and V2  N(z) such that, cl(U2) ∩ cl(F1) =  and cl(V2) ∩ cl(F2) = . Now since cl{x} ≠ 

cl{y} and cl{x} ≠ cl{z} and  is S2½ there exists U3 N(y),V3  N(z) and W1, W2  N(x) such that, 

cl(U3) ∩ cl (W1) =  and cl(V3) ∩ cl(W2) = . Then Oy = U1 ∩ U2 ∩ U3 and Oz = V1 ∩ V2 ∩ V3 are δ-open 

sets such that cl(Oy) ∩ cl(OZ) = . Since clδ(Oy) = cl(Oy) and clδ(OZ) = cl(OZ) we have clδ(Oy) ∩ clδ(OZ) = 

. 

Case II: If x  cl{y} then cl{x}= cl{y}= adhH()F. Since z  cl{y} there exist V4  N(z) and F3 F such 

that cl(V4) ∩ cl(F3) = . Since cl{x} ≠ cl{z} W3 N (x) and V5  N (z) such that, cl(W3) ∩ cl (V5) = 

. Then Py = W3  F3 and Pz = V4 ∩ V5 are δ-open sets such that cl (Py) ∩ cl (PZ) = . Since clδ(Py) = cl 

(Py) and clδ(PZ) = cl(PZ) we have clδ(Py) ∩ clδ(PZ) = . 

Thus δ is an S2½ topology coarser than  in Lρ which is a contradiction and the result follows. 

Conversely, let every -open filter F on X such that adhH(T) F = cl{x} for some x  X, is convergent. Let * 

Lρ be S2½ such that * ≤ . Let x  U for some set U  . Then adhH(*) N*(x) = cl {x}and so -open filter 

N*(x) is -convergent to x. So N (x)  N *(x) and hence U  *. As U was chosen arbitrarily we have * = 

 and the result follows. 

 As a consequence of Theorem 3.6 we obtain that every Minimal S2½ space is U(i). 

Corollary 3.7: If   Lρ is Minimal S2½ then it is U(i). 

Proof: Suppose there exists an open filter F such that adhH()F = . Then for each x  X there exists a V 

N(x) and F  F such that cl (V) ∩ cl (F) = . On the other hand since cl{x} V then X\cl {x} F. Thus 

Nat(ρ)(x)  F and N(x) ⊈ F for each x  X. Now fix x  X and δ be defined as in Theorem 3.6 above. Then δ  

Lρ and δ ≤ . For proving δ is S2½ we shoe that F contains an open filter F* such that adhH()F * = cl{x}.  

Let F* ={F  F: cl(U) ∩ cl(F) ≠  for all U N (x)}. Then F* is a proper sub-filter of F and cl{x} 

adhH()F*. Now let y cl{x} and as  is S2½ there exists  -open sets U1         N(x) and V1  N(y) such 

that, cl (U1) ∩ cl  (V1) = . Since y adhH()F there exist W1 N (y) F1  F such that, cl (W1) ∩ cl (F1) = 

. Then O = W1 ∩ V1 and G = U1  F1 are such that cl(O) ∩ cl(G) =  where O  NT(y) and G  F*. So y 

adhH()F* and hence adhH()F* = cl{x}.  Then by similar steps as in Theorem 3.6 δ is S2½ which implies that  

is not Minimal S2½ which is a contradiction and the result follows. 
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