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ABSTRACT  

In this Paper  we introduce a set termed  and studied its properties in fuzzy metric spaces for using this 

concept we have proved the results on fixed point in compact fuzzy metric spaces for two self mappings without 

using the iteration method. Pal and Pal [6], Rathore, Dolas and Singh [7] and Rathore, Singh, Rathore and Singh 

[8] in these papers we pick up this idea. 

 

I INTRODUCTION 

For any positive number α and a self mapping of a metric space X with 

 metric ρ, Kannan [3, 4 ] furnished a set termed   

S = Sα { z   X, ρ (z, Tz)  ≤  α }  

and proved certain properties on it and also established the well knownBanach’s Fixed Point Theorem 

(Liusternik and Sobole [5] ) and certain of  its extensions (Edelstein[1])  admit of alternative proofs. In 1993, Pal 

and Pal [6]  introduced a set E defined as follows 

E  = {x X , for each x ,  yX  such  that ρ(x ,Ty) + ρ(y,Tx) ≤ α} for a self mapping in a different 

way. They studied with meticulous care and established some results on fixed points without iteration method. 

 In the same manner, recently Rathore et.al [7] expand the concept of    E= {x X , for each x ,  

yX  such  that ρ(x, Ty) + ρ(y, Sx) ≤ α}  

 for two self mappings and studied it properties for the existence of fixed points, without iteration method. With 

all these fruitful investigation in the background we naturally got interested in generalizing the concept of  Ein 

fuzzy metric space and proved its properties and other related propositions yielding fixed points. 

PRELIMINARIES  

Definition 1.[2] Let (X, M, *) be a fuzzy metric space. We define open 

 ball B(x, r, t) with centre xX and radius r,  0 <  r  <  l,  t > 0  as   
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                         B (x, r, t)   =  { y X ; M(x, y, t)  > 1- r }. 

Definition 2[2]. Let (X, M, *) be a fuzzy metric space. We define closed ball  B [x, r, t]with centre x X and 

radius r, 0 < r <1 , t > 0 as  

                B [x, r, t]  =  {y X ; M(x, y, t)     1-r }. 

Topology induced by fuzzy metric 

Let (X, M, *) be a fuzzy metric space. Define  

 = { AX : xA  if and only if  there exist  t > 0  and  r,  

          0 < r < 1 such that  B(x, r, t)  A} 

Then  is a topology on X. 

Result 3. [2]. Every open ball is an open set and every closed ball is a closed set. 

Definition 4. Let (X, M, ) be fuzzy metric space. Then a collection  

C  {G : } of subsets of X is said to be a cover of X  if  


Λα

α
G



=  X. 

Definition 5. Let (X, M, ) be a fuzzy metric space. A covering C of X is said to be aopen covering of X if 

every member of C is an open set. 

Definition6. A fuzzy metric space (X, M, ) is said to be compact if every open covering of X has a finite 

subcovering. 

Now,  we prove some theorems. 

Theorem 7. A closed subset of a compact fuzzy metric space is compact. 

Proof. Let (X, M, ) be a compact fuzzy metric space and Y be a non-empty closed subset of  X. We shall show 

that Y is compact. 

Let      C  =  {G : } be an open covering of Y in X. 

Since Y is closed then Y
C
 is open in X therefore  



 
 

196 | P a g e  

 

X  =    Y CY   

     =    











α

α
G  CY  

 {G : }  CY is an open covering of X. 

 a finite subcovering {
iα

G : i, i = 1, 2, ……..n }  CY of X. 

Since Y X and Y
C
 covers no part of Y, Y  .G

n

1i
αi




  

Therefore {
iα

G : i, i = 1, 2, …….., n } is a finite sub covering of Y. 

It follows that Y is compact. 

Results 8 [2]  In a fuzzy metric space every compact set is closed and bounded.  

Theorem 9. If {Kn} is a sequence of compact set in a fuzzy metric space (X, M, *)  such that  Kn Kn+1 (n = 1, 

2, 3, …) and if 
n

lim diameter (Kn) = 1  

then 


1n
n

K consists of exactly one point.  

Proof: Suppose on the contrary that 


1n
n

K  = , then 

c

1n
n

K 






 



  =  ()
c
 

 






 




1n

c
n

K =  X     [By De-morgan’s Law]  

 c
n

K   is an open covering of X 

                         [ K
s
n are closed in X, because of being compact in X ]  

 c
n

K  is also an open cover of K1 
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  K1
c
n1

K   ……  c

nk
K     [since K1 is compact]   

  K1  =         
c
n1

c
n1 k1

KK.................. KK  


c

1
K =        c c

n1
c
n1 k1

KK.................. KK     

=       
k1 n

c
1n

c
1

KK ..................  KK  

 [complement are taken w.r.t. K1] 

=    K.......... KK
k1 nn

c

1    


c

1
K =   and  

k1 nn
K.............K =  , 

which is a contradiction because  Kn Kn+1 . 

Now, for the completeness of the proof it is sufficient to show that 


1n
α

K  contains no other point except x. 

Suppose, on the contrary that   y  X  

such that  y  x and 





1n

n
Ky . 

Then M(y, x, t) < 1, we write  = M(y, x, t). 

 Since 
n

lim diamKn = 1  

  q  N such that diam Kq> 1-  

                 diam Kq>.      (1)  

Again x, y Kq , we have 

       M(x, y, t) diamKq       (2)  

From (1) and (2) and by the definition of  

 M(x, y, t)  > M(x, y t)  

which is a contradiction.  

Hence 


1n
n

K consists of exactly one point. 
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Now, we introduce the following 

Definition10. Let (X, M, *) be a Fuzzy metric space and  be a positive number. Also let T and S be operator 

mappings X into itself. Then we define E to be the set of all those point of X, for each point x of which there 

exists a point  y  X such that  

                       M(x, Ty, t) * M(y, Sx, t)  1- . 

It may be noted that y  E 

PROPERTIES OF THE SET E 

Proposition 11 : Let X be fuzzy metric space and T and S be continuous  

mappings of X into itself. Then E is closed set.  

Proof. If E is empty then E is closed. Now if E is non-empty then let {yn} be a sequence of points of the set 

E converging to z  X. In order to prove that E is closed, we shall show that z  E.  

Since   


1nn
y  z 

  for any > 0,  a positive m  N such that  

 M(yn, z, t)  1- ε ,   n  m .     (1)  

Since T and S is continuous then  

 M(Tyn, Tz, t)  1- ε         (2)  

M(Syn, Sz, t)  1- ε         (3)  

and since y   E, then there exist y   X  such that 

 M(yn, Ty, t) * M(y, Syn, t)  1- n ,    for each n N. 

Now,  

M(z, Tyn, t) * M(yn, Sz, t)    M(z, yn, t/3) * M(yn, Tz, t/3) * M(Tz, Tyn, t/3) *  

  M(yn, z, t/3) *  M(z, Syn, t/3) * M(Syn, Sz, t/3) 

  >  (1 – ε) * (1 – ε) * (1 – ε) * (1 – ε) * (1 - n)  

since ε is arbitrary. This implies that  
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M(z, Tyn, t) * M(yn, Sz, t)    1- n . 

Therefore z  E . 

It follows that E is closed.  

Proposition 12. Let T  and S be a continuous mappings of the compact fuzzy metric space (X, M, *) into itself. 

Let {n} be a decreasing sequence of positive number converging to zero. Then the set 
nα

E (n = 1, 2, ……) is 

non-void if and only if there exist z, y  X such that x = Ty and y = Sx.  

Proof. Necessary condition 

Let x and y be points in X such that x = Ty and y = Sx, then  

 M(x, Ty, t) * M(y, Sx, t)  = 1 * 1 

     = 1  1- n (n = 1, 2, ……) 

This implies that x 
nα

E  (n = 1, 2, 3, ….) and consequently 
nα

E is non-void.  

Sufficient Condition  

Let {n} be a decreasing sequence of positive numbers converging to zero and 
nα

E (n=1, 2, 3, ….) be non-void.  

Suppose xn
nα

E  (n = 1, 2, 3, …..);  
inx  is a subsequence of {xn} converging to xX. For each 

inx (i = 1, 2, 

3, …….) there exist a point 
iny  X such that 

  

We  have a subsequence of   such that  is convergent to  y X. Therefore, for > 0  

M(x, Ty, t) * M(y, Sx, t)    

     

     
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Taking limit as n  and using the continuity of *, we have  

 M(x, Ty, t) * M(y, Sx, t)    

 

     

      1 - 
ri

n
 .      (1) 

Letting n  in (1), we have  

 M(x, Ty, t) * M(y, Sx, t) = 1. 

Hence M(x, Ty, t) = 1 and M(y, Sx, t) = 1   leading to the conclusion  

 Ty = x and y = Sx 

This completes the proof.  

Proposition 13. Let T and S be two continuous mapings of the compact fuzzy metric space (X, M, *) into itself. 

Also let {n}be a decreasing sequence of positive numbers converging to zero and let the sequence  of sets 

be such that diam  1 as n . A necessary and sufficient condition for the existence of a common fixed 

point of T and S in X is that the sets 
nα

E (n = 1, 2, …) are non-void.  

Proof. First we suppose that T and S have a common fixed point in X.  

Let  x X be such that Tx = x = Sx. Now  

 M(x, Ty, t) * M(y, Sx, t)  = 1 * 1  
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     =  1 > 1 - n  (n = 1, 2, …).  

This implies x 
nα

E .  Hence 
nα

E are non-void. In virtue of its property 
nα

E  is compact. Also 

n1n αα
EE 


and diam 1  as n .  

So, 


1n
αn

E contains exactly one point.  

Let x0 


1n
αn

E . Then there exists xn
nα

E (n = 1, 2, ….) such that  

   M(x0, Txn, t) * M(xn, Sx0, t)  1 - n     (1)  

Since X is compact, then sequence {xn} contains a convergent subsequence  (say). Let  
in

x  x X as 

i 

Thus by (1)  

   M(x0, 
inTx , t) * M(

inx , Sx0, t)  1 - n .     (2) Letting i, we 

have  

   M(x0, Tx, t) * M(x, Sx0, t) = 1   1 - n .     (3) So, x 
nα

E (n = 1, 2, 3, 

…) i.e. x  


1n
αn

E . 

Since 


1n
αn

E contains exactly one point, we obtain x = x0. 

Therefore (3) implies that  

 M(x0, Tx0, t) = 1 and M(x, Sx0, t) = 1   

and hence Tx0 = x0  and  Sx0 = x0 

Thus x0 is a common fixed point of Tand S in X. 

.Proposition12. Let (X, M, *) be a compact fuzzy metric space and let T and S be two continuous mappings  of  

X into itself. Let {n} be a decreasing sequence of position numbers converging to zero. Let X contain no points 

x, y with the property that x = Ty and y = Sx.Then the sets 
nα

E is empty for sufficiently large values of n.  
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Proof.  Suppose the theorem is not true. then there exist exit positive integers n1, n2, …  with n1< n2< n3, …… 

such that none of the set 
kn

E (K = 1, 2, …..) is empty. Let 
knx 

knE , k = 1, 2, …..Since X is compact, 

there exists a subsequence  of the sequence  such that  is convergent in X. Let  converge 

to x in X. 

Then for each 
ikn

 x (i = 1, 2, …..) there exists 
ikn

y  X such that  

 M(
ikn

 x ,
ikn

Ty , t) * M(
ikn

y ,
ikn

Sx , t)   1 - 
ikn

  . 

Since X is compact, there exists a subsequence   of  . Such that  is convergent. Let  

ri
kn

y  y in X. Now 

 1 - 
ri

kn   

Letting  r  

          M(x, Ty, t) * M(y, Sx, t)  1. 

So,     M(x, Ty, t)    1 and  M(y, Sx, t)    1 

M(x, Ty, t)  =  1  and  M(y, Sx, t)  = 1. 

Consequently Ty = x and Sx = y . 

This leads to a contradiction. 

Hence the set 
nα

E are empty for sufficiently large value of n.  

 Main result 

Pal and Pal [6] has given the following theorem: 

Theorem 1. Let (X, ρ) be a compact metric space. Let T be a continuous map of  X  into itself. Suppose that 

                                 ρ (Tx,Ty)  ≤  β [ρ (x,Ty) + ρ (y,Tx)], 

for every  x, y   X and for a real number β with 0 <  β < 21 . 

Then there exists exactly one point x0  X, such that T(x0)  =  x0. 
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Now, we are proving the following theorems taking the clues from above theorem for compact fuzzy metric 

space. 

Theorem 2. Let (X, M, *) be a compact fuzzy metric space and T, S be two continuous self mappings on X. 

Suppose that t * a * a  a.  

 M(Sx, Ty, t)   
k

t
 Sx, y,M  * 

k

t
 Ty, x, M 
















, for every x, y  X, t > 0 . 

Then there exists exactly one point xo X such that T (xo)  = xo and S (xo) = xo. 

Proof. Let {n} be a decreasing sequence of positive numbers converging to zero. In view of its property 
nα

E  

(n = 1, 2, 3, ….) is  compact. Clearly  

1nα
E




nα
E ;  n = 1, 2, 3, …… 

Now, we shall show that diam (
nα

E )  1 as n  

For any x, y 
nα

E , k  (0, 1) and  t > 0 

       M(x, y, t)    M 








3

t
  Sx, x,  * M 









3

t
  Ty, Sx,  * M 









3

t
  y, Ty,  

    M 








3

t
  Sx, x,  * M 









3k

t
  Ty, x, * 

                             M 








3k

t
  Sx, y,  * M 









3

t
  y, Ty,   

    M 








3

t
  Sx, x,  * M 









6k

t
  y, x,  * M 









6k

t
  Ty, y, *                                                           

        M 








6k

t
   x,y,  * M 









6k

t
  Sx, x,  * M 









3

t
  y, Ty,  

  M(x, y, t)     M 








6k

t
  Sx, x,  * M 









6k

t
  Ty, y,  * M 









6k

t
  y, x,  
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By repeated applications of above inequality m-time, we get  

      M(x, y, t)    M 








6k

t
  Sx, x,  * M 









6k

t
  Ty, y,  * M 








m6k

t
  y, x,  

Since M 







m6k

t
  y, x, 1 as m  it follow that  

M(x, y, t)    M 








6k

t
  Sx, x,  * M 









6k

t
  Ty, y,  

Now, for x 
nα

E , then there exists a point z  X such that  

M(x, Tz, t) * M(z, Sx, t)    1- n. 

And for y 
nα

E , then there exists a point z'  X such that  

M(y, Tz', t) * M(z', Sy, t)  1- n . 

So,  

  M(x, y, t)    M 








12k

t
  Tz, x,  * M 









12k

t
  Sx, Tz,  *  

   M 








12k

t
  ,Sz' y, * M 









12k

t
  Ty, ,Sz'  

     M 








12k

t
  Tz, x,  * M 









12k

t
  Tz, x,  *  

   M 








12k

t
  Sx, z, * M 









12k

t
  ,Sz' y, *  

    M 








12k

t
  Ty, ,z' * M 









12k

t
  ,Sz' y,  

    
























12k

t
  Sx, z, M*

12k

t
 Tz,x, M  *  
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   
























12k

t
  ,Sz' y, M*

12k

t
 Ty,,z' M   

      (1 - n) * (1 - n)   [since  z' 
nα

E ]  

Therefore M(x, y, t)  1 - n . 

Since {n} is a sequence converging to zero as n , then M(x, y, t)  1  

Hence diam  1 as   n . 

Thus   is a sequence of sets, such that  

(i). 
nα

E  is perfect  

(ii). 
1nα

E



nα
E  

(iii). diam  1 as   n  

So, by the theorem [9] 




1n
αn

E contains exactly one point.  

Let  x0 


1n
αn

E  

Now, we shall show that x0 is a fixed point in X.  

Since x0
nα

E  (n = 1, 2, 3, …..), then there exists a point xn X such that 

M(x0, Txn, t) * M(xn, Sx0, t)  1 - n t > 0    (1) 

Let  be a subsequence of the sequence {xn} such that the sequence is convergent let the  

{
in

x } convergen to x in X. Then    

M(x, x0, kt)    M 








2

t
  , xx,

in
 * M 









2

t
  , x,x

0ni
 

 M 








2

t
  , xx,

in
 * M 









6

t
  ,Sx ,x

0ni
 * 
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   M 








6

t
  ,Tx ,Sx

in0
 * M 









6

t
  , x,Tx

0ni
 

     M 







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Taking i 

      M(x, x0, t)    1 * 1 

      M(x, x0, t)    1 

M(x, x0, t)  =  1 

Hence x = x0 

Now from condition (1) 

M(x0, T
in

x , t) * M(
in

x , Sx0, t)    1 - n . 

On letting i 

 M(x0, Tx, t) * M(x, Sx, t) = 1  

 M(x0, Tx0, t) * M(x0, Sx0, t) = 1  

this implies M(x0, Tx0, t) = 1 and M(x0, Sx0, t) = 1 

i.e. Tx0 = x0 = Sx0 

Uniqueness  

Let y0 be another common fixed point of S and T, then  

M(x0, y0, t)  =  M(Sx0, Ty0, t)  
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M(x0, y0, kt)  =  M(x0, y0, t).  

This implies that x0  =  y0.  

This completes the proof.  
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