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ABSTRACT

In this paper, we study some xed point theorems in quasi partial metric spaces using expansive mappings. Also,
we derive some common xed point theorems for two compatible mappings in this framework. The results
improve and generalize many results existing in the literature. Some examples and an application to solve a rst

order ordinary di erential equation have also been presented to illustrate the e ectiveness of obtained results.
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I INTRODUCTION AND PRELIMINARIES

In 1984, Wang et al. [1] introduced expansive mappings and established some xed point theorems for complete
metric spaces. His result can be stated as:

Theorem 1.1 [1] Let T : X — X be an onto mapping defined on a complete metric space (X, d) satisfying the
condition

d(Ta, Tb)>cd(a b) forall a,be X.
where ¢ > 1. Then T has a unique fixed point in X.

Later on, various authors including Khan et al. [2], Rhoades [3], Kang [4] etc. extended this result in various
ways.

In 1994, Matthews [5] introduced partial metric spaces with an application in denotational semantics and
program verification. Till Now, there exists so many generalizations for partial metric spaces. For details, see
(6], [7]. 8], [9], [10].

Karapinar generalized this notion by presenting Quasi partial metric spaces in [11]. Let us recall that for a
nonempty set X, a mapping q : X XX — R" is said to be a Quasi partial metric if the following conditions hold:

(qD) 0 < q(x, x) = q(x, y) =q(y, y), thenx =y;
(92) a(x, x) = q(x, y);
(@3) a(x, x) = a(y.x);
(@4) a(x, 2) <q(x,y) *+q(y 2) - 4(y;.y)
for all x, y € X. Then the pair (X, q) is called a Quasi partial metric space.
If q(y, X) = q(x, y) for each x, y € X, then (X, q) reduces to partial metric space. Also, for a quasi-partial metric q

on X, the mapping dq : Xx X — R, defined by
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dq(X,y) = q(X, y) + q(y! X) - q(X, X) - q(yl y)
is called a (usual) metric on X.

Karapinar et al. [11] introduced the following definitions and results in his work.

Definition 1.2 [11] Let (X, q) be a quasi partial metric space. Then
(1) a sequence {x,} in X converges to x (in X) iff
q(x, X) = lim,_, ., q(X, X,) = lim,_, ., q(Xn, X);
(2) asequence {x,}in Xis called a Cauchy sequence iff lim,,_, . q(Xm, X) and
1M, m o 0(Xn, Xm) eXist and are finite;
(3) the quasi partial metric space (X, q) is said to be complete if every Cauchy
sequence {X,} in X converges to some x € X such that

q(x,X) = 1M s o0 Xy Xn) = 1My o0 G(Xny Xim)-

Lemma 1.3 [11] Let (X, g) be a QPMS. Let (X, py) be the corresponding PMS and let (X, dyq ) be the
corresponding metric space. The following statements are equivalent:

(1)The sequence {x,} is cauchy in (X, q) .

(2)The sequence {x,} is cauchy in (X, pg).

(3)The sequence {x,} is cauchy in (X, dyq ).

Lemma 1.4 [11] Let (X, g) be a QPMS. Let (X, py) be the corresponding PMS and let (X, dq ) be the
corresponding metric space. The following statements are equivalent:
(D) (X, q) is complete.
2 (X, pg) is complete.
3) (X, dyq ) is complete.
Moreover,

1My, o dog(X,Xn) =0 pg(X, X) = limy, o Pg(X, Xn) = 1My 1, oo Po( Xn,, Xm)

< q(x,x) = limy, o (X, Xn) = liMy -, o G( Xn,, Xm)

= Ilmnﬂooq( an X) = Iimm,nﬂoo q( Xm,l Xn)-

Lemma 1.5 [11] Let (X, q) be a quasi partial metric space. Then q(x, y) =0 implies x =y and if x£y, then q(x,
y) > 0 and q(y, x) > 0.

The main purpose of this paper is to introduce the notion of expansive mappings in Quasi partial metric spaces
and to establish some fixed point theorems in this setup. Also, some comparative examples and an application to

solve first order ordinary differential equations are also given to illustrate the usability of obtained results.

Il QUASI PARTIAL METRIC AND EXPANSIVE MAPPINGS

The following lemma will be helpful in proving our main result.
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Lemma 2.1 Let (X, q) be a quasi partial metric space and {x,} be a sequence of points of X. If there exists a
number k € (0,1) such that
g(Xn+1, Xn) < kq(xn, Xp1) ;n=1,2,... (2.1)
Then {x,} is a cauchy sequence in X. Proof. By given condition (2.1), we obtain
A(Xn+1, Xn) < kq(Xn, Xn1) < K2Q(Xn-1, Xn2) <...< K"q(Xq, Xo).
Also, max {q(Xn, Xn), A(Xns1, Xn+1)} < A(Xn+1, ) < KQ(X1, Xo)-
Then
dq(Xn, Xn+1)= A(Xn, Xn+1) + A(Xns1, Xn)= G(Xns Xn)= A(Xn+1, Xns+1)
< q(Xn, Xn+1) + G(Xne1, Xn) + 4(Xn, Xn) + G(Xns1, Xns1)
< k"q(xo, X1) + K'q(Xy, Xo) + K"q(X4, Xo) + K'q(X1, Xo)
= 3k"g(x1, Xo) + K"q(Xg, X1) where k <1
= lim n—o0 dg(Xy, Xns1) = 0.
Similarly, we can show that
lim n—o0 dg(Xn+1, Xo) = 0.
Further,
dg(Xn, Xm) = dg(Xn, Xne1) + g(Xne1, Xne2) + - + dg(Xmea, Xm)
< 3K"g(x1, Xo) + K'q(Xo, X1) + K™ (X1, Xo) + K™ (X, X1)

+oo 4+ 3KM (X, Xo) + K™ q(Xo, X1)

= 3K"q(Xy, Xo)[1 + k+ ... + k™ + K"q(Xo, X)[1 + k + ... +k™]
< (BK"/1-k)q (X1, Xo) + (K" /1-K)q(Xo, X1)
This shows that {x,} is a cauchy sequence in X w.r.t. metric dq. From Lemma 1.3, {X,} is cauchy in quasi
partial metric space (X, q).
Theorem 2.2. Let (X, q) be a complete quasi partial metric space and D : X — X be a bijective mapping
defined on X. Suppose that there exists ¢y, C; €3 = 0 such that ¢, +c; +c3> 1
and
g(Dx, Dy) = ¢ q(X, y) + ¢, q(x, Dx) + c3 q(y, Dy) forall x,yin X. (2.2)
Then D has a fixed point in X.

Proof. Let X, € X. Since D is bijective, there exists x; € X such that Dx; = X,. Define a sequence {x,} in X such
that X,.1 = DX,; n = 1,2,... If x,.1 = X, for some n, then the result is trivial. Therefore, assume that x,.# x, for all
n.

By given condition,

q(Xny Xn-1) = q(DXpe1, DXy)
= €1 (Xn+1y Xn) + C2 (Xn+1, DXne1) + C3 (X, DXp)
= €1 q(Xn+1, Xn) + C2 G(Xn+1, Xn) + €3 (Xn, Xn-1)
= (1- c3)q(Xn, Xn-1) = (C1 + C2)A(Xne1, Xn)

= q(Xn+1, Xn) < ((1- €3) /(c1 + C2)) A(Xn, Xn1)
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Since cl +c2 #0and (1 - ¢3) > 0, therefore
Aq(Xn+1, Xn) < Aq(Xn, Xn1) Where 4 =((1- ¢3) /(cy + ¢)) < 1.

Thus, by above lemma, {x,} is a cauchy sequence in X and since (X, q) is complete, therefore, (X, dg) is
complete where dy is the usual metric induced by quasi metric g.
Therefore, {X,} is convergent in X w.r.t. metric dg. Let x € X be such that

lim n—o0 dy(X” X,) = 0.

By Lemma 1.4, we have
q(x’, X)) = lim n—ow0 q(X" X,) = lim n,m—o0 q( X,, Xu) (2.3)
= lim n— q(Xy, X) = lim m,n—o0 q(Xm, Xn)-
Again by Lemma 2.2, the sequence {x,} is Cauchy in (X,d,) i.e.
lim m,n—o0 dg(Xm, Xn).
Also,
max {q(Xn, Xn), G(Xn+e1, Xne1)} < q(Xne1, Xn)
< 4 q(Xn, Xn1)

< ... < A"g(Xq, Xo).

Therefore, lim n—oo g(Xp, X,) =0.

By definition of metric dg, we have, lim m, n—o q(Xm, X,) = 0 and lim n,m —o q(X,, Xm) = 0. Thus, by (2.3),
we obtain

qx ,x ) =, limn—w q(x’, X,) =, limn—w g(x, x)=0.

which shows that {x,} is convergent in quasi partial metric space (X, q). Let u € X be such that X = Du. Next
we shall prove that X = u. Let us suppose that X # u. hen

q(Xn, X) = (DX, Du)

EClc](xnﬂ; U) + CZQ(Xn+1; DXn+1) + C3Q(U| DU)

As n—oo , above inequality becomes

0=g(x’,X) Z ciq(X, U) +csq(u, ')

= ¢,q(x", u) +caq(u, X ) <0.

but as X #u, we have, q(x, u)>0and q(u, x") > 0 with ¢, c;

non negative.

Thus, we arrive at a contradiction. Therefore, x"= u and hence
X =Du=u.

This completes the proof..
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Corollary 2.3 Let (X, gq) be a complete quasi partial metric space and D : X — X be a bijective mapping.
Suppose that there exists a constant ¢ > 1 such that
q(Dx, Dy) = cq(x; y) forall x,yin X.
Then D has a unique fixed point in X.
Proof. From above theorem, it follows that D has a fixed point x in X by putting ¢; = ¢ and ¢,, ¢3 = 0 in
inequality (2.2).
For uniqueness, let z be another fixed point of D. Then,
q(x",2)=q(Dx ,Dz)>cq(x , z) where ¢ > 1.
which is a contradiction. Therefore, X = z.
Corollary 2.4 Let (X, q) be a quasi partial metric space with g as complete metric and D : X — X be a bijective
mapping de ned on X. Suppose that there exists a positive integer n and a constant ¢ > 1 such that
q(D"x, D) > ¢ q(x, y) for all x, y in X.
Then D has a unique fixed point in X.
Proof. From Corollary 2.3, D" has a unique fixed point X in X. Also, D"(D X" ) = D(D" x" ) = D x" which shows
that D X is also a fixed point of D". By uniqueness of fixed point in D", we have D x” = X" and thus D" and D
both have a unique fixed point X .
Example 2.5 Let X = R" and q(x, y) = max {X- y, y- x} + x. Then (X, q) is a complete quasi partial metric
space. Let Dx = 3x* for all x in X.
Note that D is a bijective mapping. Also, for all x <y, we obtain
q(Dx, Dy) = q(3x%, 3y?) = 3y
> cq(x,y)wherec=3>1.
Thus, the condition of expansion is also satisfied for D.
Hence, all the conditions of Corollary 2.3 are fulfilled. Therefore, there exists a unique fixed point of D. Here, 0
is the unique fixed point.

111 APPLICATION

Consider the periodic boundary value problem

Eu'{ﬂ =k(tu®), ter=[0, :!"]}
u(0) = u(T)

(3.1)

where k : | ®R = R is a continuous function and T > 0.

A function u € C(l, R) satisfying the above conditions is a solution to problem (3.1). This application presents
the existence of a unique solution for given problem with some suitable conditions.

Theorem 3.1. Consider the periodic boundary value problem given in (3.1) where k : | %R — R is a continuous
function. Let us suppose that there exists 4 > 1 such that k(t, v) + 2 v- k(t,u) -Au = Alv —u) + uforallu, v
e Rwithv = u.

Then, existence of a solution of given problem ensures the existence of a unique solution for the same.

Proof. The given problem (3.1) can be rewritten as
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[u'{r] = dult) = k(tu(t)), te I = [0, r]}
ul0) = u(T)
which is equivalent to the integral equation

u® = [[ 66 k(s ul)) + Au(s))ds

AT +5=t) LAlE—t)
Where G(t,s)={—— 0=s <t =T and pry 0=t<s=T.

T 1

Define a bijective mapping F(u(t) =1 f; f; 6, ) [k(s,u(s)) + Au(s)]ds.t € Lu € C(LR) .

Ifu € C(L ) is a fixed point of F, then u & C(I, &) is a solution of the given problem.

Let us assume that C (I, R} = U, Define the metric g on U as

qu, v) = sup, o lult) — vt} + v() . uve Ut el

Note that (U, g) is a complete quasi partial metric space. Using definition of G, we obtain for u = v,
q(F(u), F(V)) = sup,,; |Flul®) ) — Fv(e) )| + F(w(e))

Af7 60, k(s u)) + u(s)lds

—a f7 66 D k(s. v(s)) + Av(s)]ds

= SUPL oe;

AL 60 k(s ul®) + Auls) — ks, v(s)) - Av(s)ds]ds

= SUPr zer
= sup; ;| A(uls) —v(s)) +v(s)]ds]
Since G(t.s) = 0.4 =1 and uls) = v(s). therefore the above inequality becomes
QF(), FV)) = AJ; supy 1062, 5). Al{supe ooy uls) — () [} + v(s)]ds
= 1 J] supy sG(2,5). 1 qlu, v)ds
= 2qu, v) [} supees6(2.5) ds

:ﬂ:q{”svz]mt_se:?ar_l_l(i|9'1|:T+S_ﬂ|;+i|9“3_ﬂ |r)
=A%gq(u,v) X %: Aglu.v)

= q(F(u), F(v)) = Aqu, ).
This implies that F is an expansive mapping.
Thus all the required conditions for Corollary 2:3 are fulfilled. Consequently, F has a unique fixed point and

thus given problem (3.1) possesses a solution.
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