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ABSTRACT 

 In this paper, we study some xed point theorems in quasi partial metric spaces using expansive mappings. Also, 

we derive some common xed point theorems for two compatible mappings in this framework. The results 

improve and generalize many results existing in the literature. Some examples and an application to solve a rst 

order ordinary di erential equation have also been presented to illustrate the e ectiveness of obtained results. 
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I  INTRODUCTION AND PRELIMINARIES 

 

In 1984, Wang et al. [1] introduced expansive mappings and established some xed point theorems for complete 

metric spaces. His result can be stated as: 

 

Theorem 1.1 [1] Let T : X → X be an onto mapping defined on a complete metric space (X, d) satisfying the 

condition 

                                       d(T a, T b) ≥ c d(a, b)  for all  a, b ϵ  X. 

where c > 1. Then T has a unique fixed point in X. 

Later on, various authors including Khan et al. [2], Rhoades [3], Kang [4] etc. extended this result in various 

ways. 

 In 1994, Matthews [5] introduced partial metric spaces with an application in denotational semantics and 

program verification. Till Now, there exists so many generalizations for partial metric spaces. For details, see 

[6], [7], [8], [9], [10]. 

Karapinar generalized this notion by presenting Quasi partial metric spaces in [11]. Let us recall that for a 

nonempty set X, a mapping q : X ×X → R
+
 is said to be a Quasi partial metric if the following conditions hold: 

           (q1) 0 ≤ q(x, x) = q(x, y) = q(y, y),  then x = y;        

           (q2) q(x, x) ≤ q(x, y); 

           (q3) q(x, x) ≤ q(y,x); 

           (q4) q(x, z)  ≤ q(x, y) + q(y, z) - q(y;,y) 

for all x, y ϵ X. Then the pair (X, q) is called a Quasi partial metric space. 

If q(y, x) = q(x, y) for each x, y ϵ X, then (X, q) reduces to partial metric space. Also, for a quasi-partial metric q 

on X, the mapping dq : X× X → R+  defined by 
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                        dq(x,y) = q(x, y) + q(y, x) - q(x, x) - q(y, y) 

is called a (usual) metric on X. 

Karapinar et al. [11] introduced the following definitions and results in his work. 

 

Definition 1.2  [11] Let (X, q) be a quasi partial metric space. Then 

        (1) a sequence {xn} in  X converges to x (in X) iff  

                        q(x, x) = limn→ ∞ q(x, xn) = limn→ ∞ q(xn, x); 

       (2)  a sequence {xn} in  X is called a Cauchy sequence iff limm,n→ ∞  q(xm, xn) and 

 limn,m → ∞ q(xn, xm) exist and are finite; 

       (3)  the quasi partial metric space (X, q) is said to be complete if every Cauchy             

                sequence {xn} in  X converges to some x ϵ X such that 

                      q(x,x) = limm,n→ ∞ q(xm, xn) = limn,m → ∞   q(xn, xm). 

 

Lemma 1.3 [11] Let (X, q) be a QPMS. Let (X, pq) be the corresponding PMS and let (X, dpq ) be the 

corresponding metric space. The following statements are equivalent: 

           (1)The sequence {xn} is cauchy in (X, q) . 

           (2)The sequence {xn}  is cauchy in (X, pq). 

           (3)The sequence {xn} is cauchy in (X, dpq ). 

 

Lemma 1.4 [11] Let (X, q) be a QPMS. Let (X, pq) be the corresponding PMS and  let (X, dpq ) be the 

corresponding metric space. The following statements are equivalent: 

(1) (X, q) is complete. 

(2) (X, pq) is complete. 

(3) (X, dpq ) is complete. 

Moreover, 

     limn→ ∞ dpq(x,xn) =0↔ pq(x, x) = limn→ ∞ pq(x, xn) = limn,m→ ∞ pq( xn,, xm)    

                                     ↔ q(x,x) = limn→ ∞ q(x, xn) = limn,m→ ∞ q( xn,, xm)    

                                                          = limn→ ∞ q( xn, x) = limm,n→ ∞ q( xm,, xn). 

 

Lemma 1.5 [11] Let (X, q) be a quasi partial metric space. Then q(x, y) = 0  implies x = y and if x≠ y,  then q(x, 

y) > 0 and q(y, x) > 0. 

The main purpose of this paper is to introduce the notion of expansive mappings in Quasi partial metric spaces 

and to establish some fixed point theorems in this setup. Also, some comparative examples and an application to 

solve first order ordinary differential equations are also given to illustrate the usability of obtained results. 

 

II  QUASI PARTIAL METRIC AND EXPANSIVE MAPPINGS 

 

The following lemma will be helpful in proving our main result. 
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Lemma 2.1 Let (X, q) be a quasi partial metric space and {xn} be a sequence of points of X. If there exists a 

number k ϵ (0,1) such that 

q(xn+1, xn) ≤  kq(xn, xn-1) ; n = 1, 2,… (2.1) 

Then {xn} is a cauchy sequence in X. Proof. By given condition (2.1), we obtain 

q(xn+1, xn) ≤  kq(xn, xn-1) ≤ k
2
q(xn-1, xn-2) ≤…≤ k

n
q(x1, x0). 

Also,  max {q(xn, xn), q(xn+1, xn+1)} ≤ q(xn+1, xn) ≤ k
n
q(x1, x0). 

Then 

         dq(xn, xn+1)= q(xn, xn+1) + q(xn+1, xn)- q(xn, xn)- q(xn+1, xn+1) 

                                                       ≤ q(xn, xn+1) + q(xn+1, xn) + q(xn, xn) + q(xn+1, xn+1)                              

                                                 ≤ k
n
q(x0, x1) + k

n
q(x1, x0) + k

n
q(x1, x0) + k

n
q(x1, x0)             

                                             = 3k
n
q(x1, x0) + k

n
q(x0, x1) where k < 1 

                      lim n→∞ dq(xn, xn+1)  =  0.  

Similarly, we can show that 

                          lim n→∞ dq(xn+1, xn)  =  0. 

Further, 

          dq(xn, xm) = dq(xn, xn+1) + dq(xn+1, xn+2) + … + dq(xm-1, xm) 

                               ≤ 3k
n
q(x1, x0) + k

n
q(x0, x1) + 3k

n+1
q(x1, x0) + k

n+1
q(x0, x1) 

                                 +… + 3k
m-1 

q(x1, x0) + k
m-1  

q(x0, x1) 

                            

= 3k
n
q(x1, x0)[1 + k + … + k

m-1
] + k

n
q(x0, x1)[1 + k + … + k

m-1
] 

                           ≤ (3k
n 
/1-k)q(x1, x0) + (k

n 
/1-k)q(x0, x1) 

This shows that {xn} is a cauchy sequence in X w.r.t. metric dq. From Lemma 1.3, {xn}  is cauchy in quasi 

partial metric space (X, q). 

Theorem 2.2. Let (X, q) be a complete quasi partial metric space and  D : X → X be a bijective mapping 

defined on X. Suppose that there exists c1, c2, c3  0 such that c1 +c2 +c3 > 1 

   Then D has a fixed point in X.              

 

Proof. Let x0 ∈ X. Since D is bijective, there exists x1 ∈ X such that Dx1 = x0. Define a sequence {xn} in X such 

that xn-1 = Dxn; n = 1,2,… If xn-1 = xn for some n, then the result is trivial. Therefore, assume that xn-≠ xn for all 

n. 

By given condition, 

                            q(xn, xn-1) = q(Dxn+1, Dxn) 

                                                   c1 q(xn+1, xn) + c2 q(xn+1, Dxn+1) + c3 q(xn, Dxn) 

                                     = c1 q(xn+1, xn) + c2 q(xn+1, xn) + c3 q(xn, xn-1) 

       (1- c3)q(xn, xn-1)  (c1 + c2)q(xn+1, xn) 

      q(xn+1, xn) ≤ ((1- c3) /(c1 + c2)) q(xn, xn-1)   

 and 

 q(Dx, Dy)   c1 q(x, y) + c2 q(x, Dx) + c3 q(y, Dy)  for all  x, y in X.                           (2.2)                                
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Since c1 + c2 ≠ 0 and (1 - c3) > 0, therefore   

                              q(xn+1, xn) ≤  q(xn, xn-1)  where  =((1- c3) /(c1 + c2)) < 1. 

 

Thus, by above lemma, {xn} is a cauchy sequence in X and since (X, q) is complete, therefore, (X, dq) is 

complete where dq is the usual metric induced by quasi metric q. 

Therefore, {xn}  is convergent in X w.r.t. metric dq. Let x ϵ X be such that  

                                          lim n→∞ dq(x
*
, xn)  =  0. 

 

By Lemma 1.4, we have   

 q(x
*
, x

*
) = lim n→∞ q(x

*
, xn)  = lim n,m→∞ q( xn, xm)                                                         (2.3) 

                                                = lim n→∞ q(xn, x
*
)  = lim m,n→∞ q(xm, xn). 

Again by Lemma 2.2,  the sequence  {xn} is Cauchy in (X,dq) i.e. 

                                          lim m,n→∞ dq(xm, xn). 

Also, 

                         max {q(xn, xn), q(xn+1, xn+1)} ≤ q(xn+1,  xn) 

                                                                       ≤   q(xn, xn-1) 

                                                                                                              
≤ … ≤

   n
q(x1, x0). 

           

Therefore, lim n→∞  q(xn,  xn) = 0. 

By definition of metric dq, we have,  lim m, n→∞  q(xm, xn) = 0 and lim n,m →∞  q(xn, xm) = 0. Thus, by (2.3), 

we obtain 

q(x
*
 , x

*
 ) = , lim n→∞  q(x

*
,  xn) = , lim n→∞  q(xn,  x

*
) = 0. 

which shows that {xn} is convergent in quasi partial metric space (X, q). Let u ϵ X be such that x
*
 = Du. Next 

we shall prove that x
*
 = u. Let us suppose that x

* 
≠ u. hen 

q(xn,  x
*
) = q(Dxn+1, Du) 

                                        c1q(xn+1, u) + c2q(xn+1, Dxn+1) + c3q(u, Du). 

 

As n→∞ , above inequality becomes      

0 = q(x
*
, x

*
)   c1q(x

*
,  u) + c3q(u, x

*
 )      

 c1q(x
*
,  u) + c3q(u, x

*
 ) ≤ 0.      

but as  x
*
≠ u, we have,  q(x

*
,  u) > 0 and  q(u, x

*
) > 0 with c1, c3  

non negative.  

Thus, we arrive at a contradiction. Therefore, x
*
= u and hence 

                                         x
*
  = Du = u. 

This completes the proof..    
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Corollary 2.3 Let (X, q) be a complete quasi partial metric space and D : X → X be a bijective mapping. 

Suppose that there exists a constant c > 1 such that 

                                     q(Dx, Dy)  c q(x; y) for all  x, y in  X. 

Then D has a unique fixed point in X. 

Proof. From above theorem, it follows that D has a fixed point x in X by putting c1 = c and c2, c3 = 0 in 

inequality (2.2). 

For uniqueness, let z be another fixed point of D. Then, 

                       q(x
*
 , z) = q(Dx

*
 , Dz) ≥ c q(x

* 
,  z) where c > 1. 

which is a contradiction. Therefore, x
*
 = z. 

Corollary 2.4 Let (X, q) be a quasi partial metric space with q as complete metric and D : X → X  be a bijective 

mapping de ned on X. Suppose that there exists a positive integer n and a constant c > 1 such that 

                                   q(D
n
x, D

n
y) ≥ c q(x, y) for all x, y in X. 

Then D has a unique fixed point in X. 

Proof. From Corollary 2.3, D
n
 has a unique fixed point x

*
 in X. Also, D

n
(D x

*
 ) = D(D

n
 x

*
 ) = D x

*
 which shows 

that D x
* 

is also a fixed point of D
n
. By uniqueness of  fixed point in D

n
, we have D x

*
 = x

*
 and thus D

n
 and D 

both have a unique fixed point x
*
 . 

Example 2.5 Let X = R
+
 and q(x, y) = max {x- y, y- x} + x. Then (X, q) is a complete quasi partial metric 

space. Let Dx = 3x
2
 for all x in  X. 

Note that D is a bijective mapping. Also, for all x ≤ y, we obtain 

                        q(Dx, Dy) = q(3x
2
, 3y

2
) = 3y

2
 

                                                              ≥  c q(x, y) where c = 3 > 1. 

Thus, the condition of expansion is also satisfied for D. 

Hence, all the conditions of Corollary 2.3 are fulfilled. Therefore, there exists a unique fixed point of D. Here, 0 

is the unique fixed point. 

 

III APPLICATION  

Consider the periodic boundary value problem  

 (3.1) 

  

where k : I R  R is a continuous function and T > 0. 

A function u  C
1
(I, R) satisfying the above conditions is a solution to problem (3.1). This application presents 

the existence of a unique solution for given problem with some suitable conditions. 

Theorem 3.1. Consider the periodic boundary value problem given in (3.1) where k : I R  R is a continuous 

function. Let us suppose that there exists  > 1 such that k(t, v) +  v-  k(t, u) -  u for all u, v 

 R with v  u. 

Then, existence of a solution of given problem ensures the existence of a unique solution for the same. 

Proof. The given problem (3.1) can be rewritten as 
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which is equivalent to the integral equation 

         

Where G(t,s)=  and   

Define a bijective mapping F(u(t)) =  .  

If  is a fixed point of F, then  is a solution of the given problem. 

Let us assume that . Define the metric q on U as 

q(u, v) =  

Note that (U, q) is a complete quasi partial metric space. Using definition of G, we obtain for u v,  

               q(F(u), F(v)) =  

                                      

                                   =  

                                        

Since  and   therefore the above inequality becomes 

q(F(u), F(v))  

                       =  

                      =  

                       =  

                         =   =   

          q(F(u), F(v)) . 

This implies that F is an expansive mapping. 

Thus all the required conditions for Corollary 2:3 are fulfilled. Consequently, F has a unique fixed point and 

thus given problem (3.1) possesses a solution. 
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