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ABSTRACT 

This article deals with the unsteady double diffusive mixed convection flow over exponentially permeable 

vertical stretching surface through Darcy-Forchheimer porous medium in presence of chemical reaction, 

Dufour and Soret (cross diffusion) effects. The unsteadiness in the flow, temperature and species concentration 

fields is due to time dependent free stream velocity and stretching sheet velocity. The non-dimensional equations 

are obtained from governing equations by employing the implicit finite difference method in combination with 

Quasi-linearization technique. Numerical computations are presented graphically to show the chemical 

reaction, Soret, Dufour and permeability effects on temperature, velocity and species concentration profiles. 

The results for heat transfer, the skin friction and mass transfer coefficient are also presented. The present 

results are excellent as compared with previously published work. 

 

Keywords: Exponentially Stretching Surface, Unsteady Mixed Convection, Non-Similar Solution, 

Darcy-Forchheimer Porous Medium, Chemical Reaction, Dufour And Soret Effects. 

 

I. INTRODUCTION 

 

The fluid flow through porous medium has attracted the attention of many researchers/scientists due to their 

wide applications in technology and industry, also in natural circumstances, such as in the field of agricultural 

engineering to study the underground water resources, seepage of water in river beds, in petroleum technology 

to study the movement of natural gas, oil and water through oil reservoirs, in chemical engineering for filtration 

and purification process (Hayat et al. [1]), the dispersion of chemical contaminants, in chemical catalytic 

reactors, in thermal insulation, in storage and disposal  of chemical and  nuclear waste material, pollutant 

dispersion in aquifers, packed bed reactors, geothermal extraction, cooling of electronic components, food 

processing, casting and welding of manufacturing processes(Patil et al. [2]), heat exchangers, soil pollution, 

fibrous insulation etc. The effect of surface melting on steady, mixed convection, boundary layer flow over a 

vertical flat surface embedded in a fluid-saturated porous medium examined by Merkin et al. [3]. Recently, 

Swain et al. [4] studied the flow over exponentially stretching sheet through porous medium with heat 
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source/sink. The Darcy law, which states that the volume averaged velocity is proportional to the pressure 

gradient, is only suitable for low velocity viscous fluid flows and fluid with small porosity (Hong et al. [5]). But 

the Darcy law is not applicable in many practical situations, like porous medium bounded by impermeable wall, 

higher fluid flow rates and non-uniform porosity distribution near wall region. Therefore, it is essential to 

incorporate the non-Darcian terms in the study of the convective transport in a porous medium (K. Das [6]). The 

inertia effect is expected to be more important at high flow rate hence velocity squared term is added to 

momentum equation, which is known as the Forchheimer drag parameter. Kumari et. al [7] investigated non-

similar solution of non-Darcy mixed convection flow in saturated porous medium.  

Flow and heat transfer from an exponentially stretching surface has wide applications in science and technology, 

for example in case of annealing and thinning of copper wires the final product depends on the rate of heat 

transfer at the continuous stretching surface with exponential variations of stretching surface velocity and 

temperature distribution. Raju et al. [8] investigated heat and mass transfer in magnetohydrodynamics Casson 

depends on the rate of heat transfer at the continuous stretching surface with exponential variations of stretching 

surface velocity and temperature distribution. Heat and mass transfer over exponentially stretching continuous 

surface was investigated by Magyari and Keller [9]. Unsteady mixed convection flows do not necessarily permit 

similarity solutions in many practical situations. The unsteadiness and non-similarity occur due to the time 

dependent free stream velocity as well as wall stretching velocity. Due to the mathematical complexity in 

obtaining non-similar solutions for such flow problems, many investigators have restricted their investigation\ 

analysis either to an unsteady similar flows or steady non-similar flows (Patil et al. [10]). Patil et al. [11] have 

investigated unsteady two-dimensional mixed convection flow along a vertical power-law stretching sheet in a 

parallel free stream with a power-law wall temperature distribution. 

The energy flux caused by concentration gradient is termed as Dufour effect and the mass flux due to 

temperature gradient is known as Soret effect. In most of the studies these effects are neglected because of their 

smaller orders of magnitude described by Fick's and Fourier laws. Recently, the developments in this area show 

that these effects are identical when density differences exist in the fluid flow. Generally, Soret and Dufour 

effects are taken as second order phenomenon. The Dufour and Soret (cross diffusion) effects have many 

practical applications such as the ground water migration, the solidification of binary alloys, and in the areas of 

geosciences, and chemical engineering. The Soret effect, for instance has been utilized for isotope separation 

and in mixture between gases with very light molecular weight and of medium molecular weight (M. B. K 

Moorthy et al. [12]) and also in natural hydrocarbon reservoirs. The effect of Dufour was in considerable 

magnitude such that it cannot be neglected. Shrinivacharya and RamReddy[13] investigated mixed convection 

flow over exponentially stretching surface in presence of Non-Darcy porous medium, soret and dufour effects. 

Heat and mass transfer with chemical reaction has numerous practical applications in industry and technology, 

such as in drying and cooling processes etc. Suction/ injection (blowing) of a fluid over a stretching surface can 

influence the flow field. In general suction tends to enhance the skin friction, heat transfer, and mass transfer 

coefficients, whereas injection acts in opposite manner. The processes of suction/ injection has many practical 

applications in science and engineering, such as distribution of temperature and moisture over agricultural fields 

and groves of fruit trees, in the design of thrust bearing and radial diffuser, and thermal oil recovery etc. Suction 

is applied to chemical processes to remove reactants. Injection or blowing is use to cool surface, prevent 
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corrosion or scaling and reduce the drag, polymer fiber coating, and coating of wires etc ( Patil et al. [14]). 

Effect of heat source or sink on unsteady flow and heat transfer with suction or blowing studied by Cheng et. al 

[15]. 

The aim of the present paper is to explore the effects of unsteady mixed convection flows over exponentially 

permeable stretching sheet through porous medium with Chemical reaction, Soret and Dufour effects. This work 

has not been reported in the literature so far to the authors best of knowledge. Non-similar transformations are 

used to transform the governing boundary layer equations to a set of non-dimensional equations and then 

numerically solved by Quasi-linearization technique [16] in combination with the implicit finite difference 

scheme. We found that the numerical results are excellent as compared with previous published data. 

 

II. ANALYSIS 

 

Consider an unsteady double diffusive mixed convection boundary layer flow bounded by a semi-infinite 

vertical permeable exponentially stretching sheet embedded in a Darcy-Forchheimer porous medium. Also, we 

consider the Dufour and Soret effects. The x-axis is taken along the plate in the vertically upward direction and 

the y-axis is taken normal to it. Figure 1 shows the schematic representation of the physical model and 

coordinate system. The buoyancy force arises due to the concentration and temperature variations, and body 

force arises because of density variations except these effects all thermo-physical properties of the fluid are 

assumed to be constant. The Boussinesq approximation is invoked for the fluid properties to relate density 

changes, and to couple the temperature and species concentration fields to the flow field (Schlichting and 

Gersten[17]). Under these assumptions, the equations of conservation of mass, momentum, temperature and 

species concentration governing flow over exponentially stretching sheet are given by [2] 
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The physical boundary conditions are given by 
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The wall stretching sheet velocity  wU x and free stream velocity  eU x   are respectively defined by 
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 (6)           
  
to Eqs. (1) - (4), we find that Eq. (1) is trivially satisfied, and Eqs. (2) - (4) reduce to 
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The non-dimensional boundary conditions (5) become
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0A  for the injection or blowing and 0A  for an impermeable surface.  
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The momentum Eq. (7), the energy Eq. (8) and the species concentration Eq. (9) are coupled with each other.  

Further, the Richardson number Ri, which characterizes the mixed convection effects, N representing the ratio 

between the thermal and the solutal buoyancy forces,   is the velocity ratio parameter,   is chemical effect, 

Da is Darcy number,   is Forchheimer drag coefficient, Df is the Dufour number and Sr is the Soret number 

and they are defined, respectively, as 
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0( ) /wGr g C C L    is the Grashof number referring to the wall species concentration and 

0Re U L   is the Reynolds number. The flow is steady at 0  and becomes unsteady 0  due 

to exponentially stretching wall velocity varies with time, and this wall velocity given by 
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 The physical quantities of practical interest are given by the Nusselt number Nu , the skin friction 

coefficient ,fC  and the Sherwood number Sh , which represent the shear stress, the mass transfer rate and the 

heat transfer rate at the surface, respectively. These coefficients are defined, respectively, as  
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III. METHOD OF SOLUTION 

 

The numerical method used for this investigation is the implicit finite difference method. A central difference 

formula is applied across the boundary layer direction i. e.,  - direction and backward difference formula in 

streamwise  and time  directions. After we apply Quasi-linearization technique[16] to solve the non-

dimensional equation. The application of this technique is quadratic rate of convergence. Using this technique 

the non-linear coupled partial differential equations are transformed to linear partial differential equations as 

following 
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The coefficient functions with iterative index i are known and the functions with iterative index (i+1) are to be 

determined. The corresponding boundary conditions are given by   
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 The final equations were then formed to a system of linear algebraic equations with a block tri-diagonal 

matrix, which is then solved by Varga’s algorithm [18]. We have chosen step sizes of  ,   and  as 

0.01, 0.01 and 0.01, respectively, which ensure the convergence of the numerical solution to the exact solution. 

A convergence criterion based on the relative difference between the current and previous iteration values is 

employed. The numerical solution is assumed to have converged and the iteration process is terminated when 

the difference reaches less than
510
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The present numerical results are compared with the results previously reported by Magyari and keller[9] and 

Srinivasacharya and Ramreddy[13] to validate the accuracy and convergance. The results are found to be in 

excellent agreement as given in Table 1. 

In support of non-similar solutions the effects of all the physical parameters involved in the problem, some of 

the numerical results pertaining to skin friction parameter  
1/2

Re fC , heat transfer  

Parameter  
1/2

Re Nu


and mass transfer parameter  
1/2

Re Sh


are tabulated in Table 2. 

 

IV. RESULTS AND DISCUSSION 

 

The system of dimensionless non-linear coupled partial differential equations (7) - (9) under the boundary 

conditions (10) have been solved numerically by using Quasi-linearization technique [23] with implicit finite 

difference scheme. The numerical computations have been carried out for various values 

of ( 1 3 ), ( 0.5 1.5),Ri Ri      
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(0.1 1.5), Pr(0.7 Pr 7.0), (0.66 2.57), (0.1 1.5), (0.0 2.0),Df Df Sc Sc Sr Sr         
 

( 0.2 0.2), (0 1 ), ( 1 3),N N           (1.0 1000000).Da Da  The edge of the 

boundary layer  has been taken between 4.0 and 10.0 depending on the values of the governing parameters. 

The numerical results have been obtained for both accelerating 
2[ ( ) 1 ; 0,0 1]         and 

decelerating
2[ ( ) 1 ; 0,0 1]         free stream velocities of the fluid. It may be noted that 

the range of parameter values is used for air and water at different temperatures. For example, Pr = 0.7 for air, 

Pr = 7.0 for water at 
020 C and the value of Pr reduces for water at higher temperature.

 

The effects of Reynolds (Re) number and time ( ) on velocity profile ( ( , , ))F     for accelerating flow 

2( ) 1 , 1      when 

0.5, 1.0, 0.5 , 1.0, Re 2.0,N      1.0, Pr 0.7, 0.5, 0.5,Ri Df Sr   

0.94, 1.0 and 1.0,Sc Da A   is shown in Fig. 2. It is observed that the velocity profile is decreasing with 

increase of Re and . Physically, the Reynolds number measures the relative velocity of the flow. Thus the 

velocity increases with increasing values of Reynolds number, which reduces the magnitude of velocity profile. 

For instance, 1,  Re 2, 0.5,  0.5, 0.5, 0.5, 1, 1, 1, 0.5,Df Sr N A Da         the 

velocity profile decreases by 13% and 6% with increasing values of Re from 10 to 50 along with increasing 

values of time   from 0 to 1. 

Figure 3 shows the effects of Forchheimer’s drag coefficient ( ) and time  on velocity profile 

 , ,F    for accelerating flow 

2( ) 1 , 1.0      when Re 1, 0.5,  1,Ri  Pr 0.7, 0.5, 0.5, 1.0Df Sr N   ,

1, 0.94, 1, 1.Sc A Da     It shows that the magnitude of the velocity profile decreases with increase 

of Forchheimer’s drag coefficient ( ) . Also, the momentum boundary layer thickness reduces as time 

 increases from 0 to 1. 

The effects of N  and  on  , ,F     for 2.0,  Pr = 0.7, Sc = 0.94, Sr = 0.5, Df = 0.5, 1.0  , Ri = 

1, 0.5, 0.5, 1and 1Da A      are plotted in Fig. 4. The velocity overshoot increase with increase 

of buoyancy forces parameter (N). It is clear that assisting buoyancy ratio parameter N> 0, acts like favourable 

pressure gradient, which accelerates the flow and overshoot occurs in velocity profile. The unsteadiness 

parameter  shows the significant effect on velocity profile, the velocity profile decreases with increase of time 

 from 0 to 1. Thus, the momentum boundary thickness reduces with increase of  from 0 to 1. In particular, 

for 

example, 2,  Re 1, 0.5,  1,Ri  Pr 0.7,

0.5, 0.5, 0.5, 0.5, 1, 1,Df Sr A Da         the velocity profile decreases by 10% and 27% as 

increases of N from -1 to 1 and increase of   from 0   to 1  . Fig. 5 illustrate the effects of N and Da on 
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 
1/2

Re fC  for both the accelerating 
2( ) 1 , 0.5       and decelerating flow 

2( ) 1 , 0.5       when Ri = 1,  = 1.0, Sc = 0.94, 

Re 2, 0.5, Pr 0.7,    0.5, 0.5, 1, 0.5, 1.Sr Df Da A      The skin friction parameter 

 
1/2

Re fC increases with increase of N from -1 to 1. The reason is that higher values of N, implies the 

assisting pressure gradient and fluid moves faster with high velocity. The skin friction coefficient increases for 

accelerating flow and decreases for decelerating flow. In particular, when Ri = 1,  = 1.0, Sc = 

0.94, Re 2, 0.5, Pr 0.7,    0.5, 0.5, 1, 0.5, 1,Sr Df Da A        
1/2

Re fC increases 

approximately by 53% and 46% with the increase in  from -0.5 to 0.5. 

Figure 6 shows the effects of Dufour number (Df) and time  on temperature profile ( , , )G    for  = 2, Ri = 

1,  = 1, Sc = 0.94, N = 1, Re 2 and 1, 0.5, 0.5, 1, 0.5, 1.Sr Da A       The effect of dufour 

term on temperature profile is highly significant because the dufour term appears only in temperature equation, 

which enhances the thermal boundary layer thickness. Further, the unsteadiness decreases the thermal boundary 

layer thickness. For example, when  = 2, Ri = 1,  = 1, Sc = 0.94, N = 1, 

Re 2 and 1, 0.5, 0.5, 1, 0.5, 1,Sr Da A       temperature profile decreases 85% and 39% 

with increasing values of time  from 0  to 1  , with Df = 0.1 and Df = 1.0 respectively. 

The variations of Dufour number (Df) and surface mass transfer (A) on  
1/2

Re Nu


heat transfer coefficient is 

plotted in Fig. 7 for  

1, 1.0, Sc 0.94, 1.0, Re 2, Pr 0.7,Ri N      0.5, 0.5, 0.5 and 1.Sr A    The heat 

transfer coefficient  
1/2

Re Nu


 increases with the increase of A from A = -1 to 1. Further,  
1/2

Re Nu


 

decreases with increase of Dufour number from 0.1 to 1. Physically, the dufour number is ratio of concentration 

difference to the temperature. The heat transfer increases with suction (A>0) and decreases with injection 

(A<0). In particular, for instance for decelerating flow 
2( ) 1 , 0.5       when Ri = 1,  = 1, N = 1, 

Re 2 , 0.5, 1.5, 0.5, 1Df Da     the  
1/2

Re Nu


decreases 42% and 36% with the increase of 

Df from 0.1 to 1.0 , and with the increase of A for -1 to 1, respectively. 

Figure 8 illustrates the effects Schmidt number (Sc) and time  on concentration profile for accelerating flow 

2( ) 1 , 1       with 1, 1.0, 1, Pr 0.7,N Ri     1, 0.5,  0.5, 1.Df Da  It is 

evident that the  increase of time decreases the concentration profile. Further, increase in the Schmidt number, 

the concentration profile decreases. The reason is the Schmidt number means decrease of diffusivity that results 

in decrease of concentration boundary layer thickness. For instance, for accelerating flow 

2( ) 1 , 1       with 1, 1.0, 1, Pr 0.7,N Ri     1, 0.5,  0.5, 1Df Da  the 
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concentration profile decreases 26% and 43% with the increase of Sc from 0.22 to 0.94 , and with the increase 

of  from 0 to 1, respectively. 

Figure 9 displays the effects of chemical reaction parameter  and Soret number Sr on  
1/2

Re Sh


 

(Sherwood number or mass transfer coefficient) for accelerating flow 
2( ) 1 , 0      and decelerating 

flow 
2( ) 1 , 0       when Ri = 1, = 1.0,Df = 0.5, Sc = 0.94, N= 1.0,Pr = 0.7, Re 2 , 

0.5, 1.5, 1 1.Da and A    It is clearly observed that  
1/2

Re Sh


decreases with increase of 

Soret number.  Physically, the Soret number is ratio of temperature gradient to concentration. Further, Chemical 

reaction parameter shows the significant role in mass transfer, while the Sherwood number increases with 

increase of chemical reaction parameter. The physical reason is that the species generation ( 0  ) effect 

reduces the concentration boundary layer thickness. Thus, the mass transfer coefficient increases with increase 

of chemical reaction parameter. For example, when Ri = 1,  = 1.0, Df = 0.5, Sc = 0.94, N = 1.0, Pr = 

0.7, Re 2 , 0.5, 1.5, 1 1, 0.5,Da and A        
1/2

Re Sh


increases 21% and 31% with 

increase of Soret number Sr from 0.1 to 1 and with increase of chemical reaction parameter   from  -0.5 to 1.0, 

respectively.  

 

V. CONCLUSION 

 

A numerical study is carried out for the unsteady mixed convection flow over permeable exponentially 

stretching surface through Darcy-Forchheimerporous medium in presence of cross diffusion (Dufour and Soret) 

and chemical reaction effects. The resulting system of dimensionless coupled nonlinear partial differential 

equation was solved by using an implicit finite difference scheme in combination with Quasi-linearization 

technique. From this numerical investigation the following conclusions are drawn 

 The velocity profile increases with increasing values of buoyancy forces parameter and it decreases with 

increasing values of Forchheimer drag coefficient. 

 The temperature profile increases with increasing values of Dufour number and concentration profile 

decreases with increasing values of Schmidt number.  

 The skin friction coefficient increases with increase in buoyancy forces parameter. Further, Suction 

increases the skin friction, mass transfer and heat transfer coefficient. 

 The mass transfer coefficient increases, with increase of chemical reaction parameter and decreases of Soret 

number. 
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Table 1. Values of  0g   for varius values of Prandtl number Pr with  0,  0,Df  and N = 

0, , 0,Da   0,Sr Sc  0.Ri   
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Pr 0.5 1.0 3.0 5.0 8.0 10.0 

Magyari and 

Keller[9] 

-0.59434 -0.95478 -1.86908 -2.50014 -3.24213 -3.66038 

Srinivasacharya 

and Ramreddy[13] 

-0.59438 -0.95478 -1.86908 -2.50015 -3.24218 -3.66043 

Present work -0.59437 -0.95480 -1.86908 -2.50017 -3.24222 -3.66045 

 

Table. 2: Values of  
1/2

Re fC ,  
1/2

Re Nu


,  
1/2

Re Sh


 for different values of Prandtl number  Pr 

with 0.2, 1,Re 1.          
 

 

Nomenclature 

C  Species concentration (kg m
-3

) 

fC
 

Local skin-friction coefficient 

Pr Ri   N   Da Df   Sr Sc A    
1/2

Re fC
 

 
1/2

Re Nu


 

 
1/2

Re Sh


 

0.7 1 1 0.5 0.5 1 0.5 0.5 0.5 0.94 1 1 0.50820    
 

2.51605    
 

3.50285
 

0.7 1 1 0.5 0.5 1 0.5 0.5 0.5 0.94 1 1.5 0.42483    
 

2.97715    
 

4.03283
 

0.7 1 1 0.5 0.5 1 0.5 0.5 0.5 0.94 1 2 0.35182    
 

3.53164    
 

4.67637
 

0.7 1 1.5 0.5 0.5 1 0.5 0.5 0.5 0.94 1 1 3.84100    
 

2.77257    
 

3.84957
 

0.7 1 1.5 0.5 0.5 1 0.5 0.5 0.5 0.94 1 1.5 6.31817    
 

3.30948
 

4.45110
 

0.7 1 1.5 0.5 0.5 1 0.5 0.5 0.5 0.94 1 2 10.48815    
 
3.94448

 
5.17337

 

7.0 1 1.0 0.5 0.5 1 0.3 0.5 0.5 0.22 1 1 0.33463   
 

16.87637    
 
0.02493

 

7.0 1 1.0 0.5 0.5 1 0.3 0.5 0.5 0.22 1 1.5 0.28285   
 

18.60003    
 
0.16304

 

7.0 1 1.0 0.5 0.5 1 0.3 0.5 0.5 0.22 1 2 0.23723   
 

20.65983    
 
0.33283

 

7.0 1 1 0.5 0.5 1 0.3 -0.5 0.5 0.22 1 1 0.33920   
 

16.95180   
 

-0.13585
 

7.0 1 1 0.5 0.5 1 0.3 -0.5 0.5 0.22 1 1.5 0.28600
 

18.66376    
 
0.02549

 

7.0 1 1 0.5 0.5 1 0.3 -0.5 0.5 0.22 1 2 0.23921   
 

20.71311    
 
0.21670

 

7.0 1 1 0.5 0.5   0.3 -0.5 0.5 0.22 1 1 0.34838    16.95277    -0.13510 

7.0 1 1 0.5 0.5   0.3 -0.5 0.5 0.22 1 1.5 0.29185    18.66424     0.02574 

7.0 1 1 0.5 0.5   0.3 -0.5 0.5 0.22 1 2 0.24297    20.71335     0.21705 

0.7 1 1 0.5 0.5   0.5 0.5 0.5 0.94 -1 1 0.48028     1.73493     2.21510 

0.7 1 1 0.5 0.5   0.5 0.5 0.5 0.94 -1 1.5 0.41272     2.15812     2.69368 

0.7 1 1 0.5 0.5   0.5 0.5 0.5 0.94 -1 2 0.34853     2.68387     3.29531 
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pC
 

Specific heat at constant pressure (J K
-1

kg
-1

) 

sC
 

The concentration susceptibility 

wC
 

Concentration at the wall (kg m
-3

) 

0wC
 
Reference concentration 

C  
Ambient species concentration 

D  Mass diffusivity 

Df  Dufour number 

Da Darcy number 

f
 

Dimensionless stream function 

R  chemical reaction rate 

F  Dimensionless velocity  

g
 

Acceleration due to gravity (ms
-2 

) 

G  Dimensionless temperature 

*,Gr Gr
 

Grashof numbers due to temperature and species concentration, respectively 

H  Dimensionless species concentration 

L       characteristic length (m) 

N  Ratio of buoyancy forces 

Nu  Nusselt number 

Pr  Prandtl number     

Re
 
Reynolds number 

Ri  Richardson number 

S     Empirical constant in the second-order resistant term 

Sc  Schmidt number  mD  

Sr   Soret number 

t       Time 

T  Temperature (K) 

mT  The mean fluid temperature (K) 

wT
 

Temperature at the wall (K) 

0w
T

 
Reference temperature 

T  
Ambient temperature (K) 

u     Velocity component in the x  direction (m s
-1

) 
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v        Velocity component in the y direction (m s
-1

) 

,x y
  

Cartesian coordinates (m) 

Greek symbols 

   Thermal diffusivity (m
2 
s

-1
) 

*, 
 

Volumetric coefficients of the thermal and concentration expansions, respectively (K
-1

) 

, ,  
 

Transformed variables 


 

Dynamic viscosity (kg m
-1 

s
-1

) 

   Kinematic viscosity (m
2 
s

-1
) 

( )   Unsteady function of   


 Density (kg m

-3
) 


 Stream function  

  Forchheimer’s drag parameter 

 

Subscripts 

w  condition at the wall  

e  free stream condition 

, ,  
 

Denote the partial derivatives with respect to these variables, respectively. 
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Fig.1.The physical model and coordinate system.  
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