Vol. No.5, Issue No. 10, October 2016 www.ijarse.com

MIGRATED AMMENSALISM WITH MORTALITY FOR BOTH THE SPECIES -A CASE STUDY

Dr.K.V.L.N.Acharyulu

Associate Professor, Department of Mathematics, Bapatla Engineering College, Bapatla,(India.)

ABSTRACT

The paper detects the characteristic nature of Migrated Ammensalism with mortality of both the species. The study is carried out with the help of Phase plane analysis. This model is framed by a couple of first order non linear differential equations. The specific nature of this model is established for identifying the stability in some cases with the aid of null clines, trajectories and solution curves.

Keywords: Ammensalism, Stability and threshold diagrams.

I. INTRODUCTION

Mathematical modeling in the life sciences is an effective tool to identify the nature of any model with less expensive and almost all gaining feasible solutions. One of the important roles of mathematicians is to investigate the proper results in various cases of life, medical and social sciences. New mathematical techniques are to be found for dealing the complex situations. Kapur [14] concentrated many diverse topics on mathematical modeling in biological and medical sciences. The computational techniques and required literature are available in the Research work of Meyer [16], Gause [12], Paul Colinvaux [17], Haberman [13], , Thompson [119], Freedman [11] etc. The Basic concepts were constructively introduced by a Volterra [20]. Acharyulu K.V.L.N. [1-10] et.al determined considerable fruitful results in many ecological models.

II. NOTATIONS ADOPTED

 N_1 (t) : The population rate of the species S_1 at time t

 $N_2(t)$: The population rate of the species S_2 at time t

 a_i : The natural growth rate of S_i , i = 1, 2.

 h_i : The rate of harvest of S_i , i = 1, 2.

a₁₁ :The rate of decrease of Ammensal Species due to it's own insufficient resources...

 a_{12} :The inhibition coefficient of S_1 due to S_2 i.e The Ammensal coefficient.

The state variables N_1 and N_2 as well as the model parameters a_1 , a_2 , a_{11} , a_{12} , h_i , are assumed to be non-negative constants.

Vol. No.5, Issue No. 10, October 2016

www.ijarse.com

III. BASIC EQUATIONS: The basic equations are given as

$$\frac{dN_1}{dt} = -a_1N_1 - a_{11}N_1^2 - a_{12}N_1N_2 + h_1 \tag{1}$$

$$\frac{dN_2}{dt} = -a_2N_2 + h_2 \quad \text{with initial conditions } N_1(0) = \mathbf{c}_1 \text{ and } N_2(0) = \mathbf{c}_2$$
 (2)

Case(i): When $\mathbf{a_1}$ =**0.856**, $\mathbf{a_{11}}$ =0.578, $\mathbf{a_{12}}$ =0.454, $\mathbf{h_1}$ =0.645 and $\mathbf{a_2}$ =0.679, $\mathbf{h_2}$ =0.632.

The Null clines, Solution Curves and Trajectories are drawn in the Fig.1(A), Fig.1(B), & Fig.1(C) respectively.

In this case, The Eigen values are 0.098718 and -0.678 with the eigen vectors (1,0) & (0,1). The Jacobean 2.9663

matrix is
$$\begin{pmatrix} 0.098718 & 2.9663 \\ 0 & -0.678 \end{pmatrix}$$
.

Saddle point exists at (-6.5337, 0.93215) and One of the eigen value is non-negative.

Hence, it is unstable.

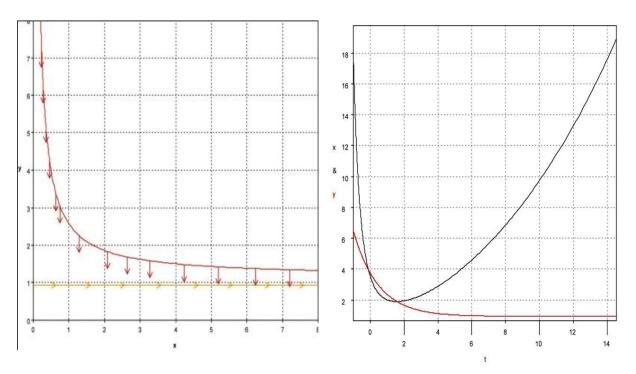


Fig.1(A): Null clines

Fig.1(B): Solution Curves

Vol. No.5, Issue No. 10, October 2016

www.ijarse.com

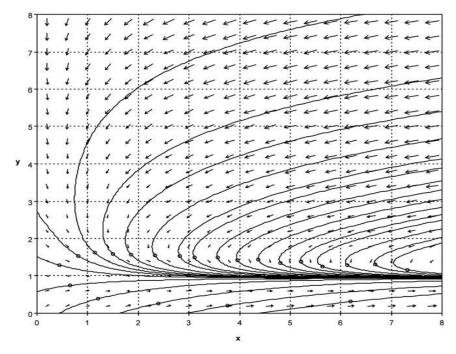


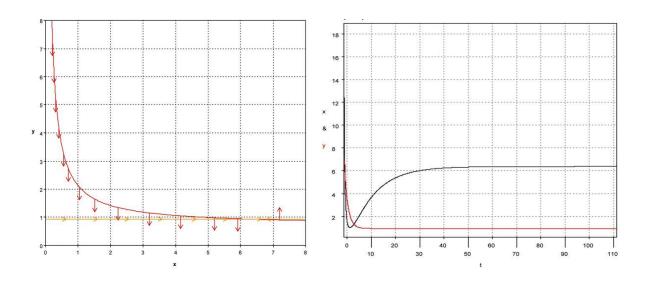
Fig.1(C): Threshold Diagram

Case(ii): When a_1 =0.656, a_{11} =0.578, a_{12} =0.454, h_1 =0.645 and a_2 =0.679, h_2 =0.632. .

The Null clines, Solution Curves and Trajectories are drawn in the Fig.2(A), Fig.2(B), & Fig.2(C) respectively. In this case, The Eigen values are -0.10128 and -0.678 with the eigen vectors (1, -4.79994E-18) & (0,1). The

Jacobean matrix is
$$\begin{pmatrix} -0.10128 & -2.8912 \\ 0 & -0.678 \end{pmatrix}$$

The equilibrium point occurs at (6.3684, 0.93215)



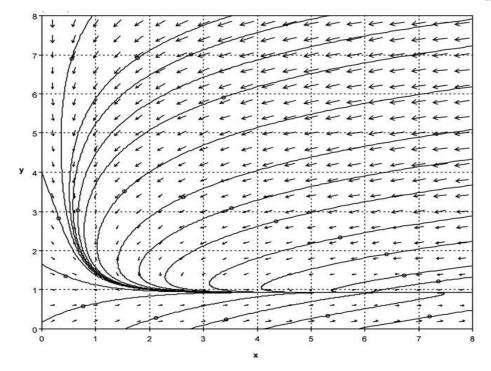

Fig.2(A): Null clines

Fig.2(B): Solution Curves

Vol. No.5, Issue No. 10, October 2016

www.ijarse.com

 $\label{eq:Fig.2} \textbf{Fig.2} \textbf{(C): Threshold Diagram}$

Case(iii): When a_1 =0.456, a_{11} =0.578, a_{12} =0.454, , h_1 =0.645 and a_2 =0.679, h_2 =0.632. The Null clines, Solution Curves and Trajectories are drawn in the Fig.3(A), Fig.3(B), & Fig.3(C) respectively.

In this case, The Eigen values are -0.30128 and -0.678 with the eigen vectors (1,0) & (0,1) and the Jacobean

matrix is
$$\begin{pmatrix} -0.30128 & -0.97195 \\ 0 & -0.678 \end{pmatrix}$$

The equilibrium point of this system exists at (6.3684, 0.93215)

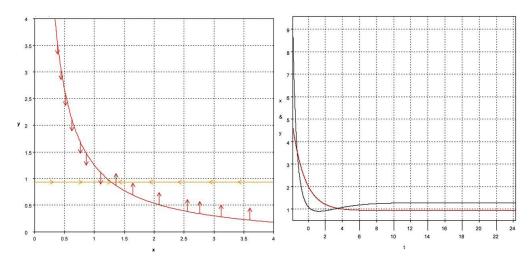


Fig.3(A): Null clines

Fig.3(B): Solution Curves

Vol. No.5, Issue No. 10, October 2016

www.ijarse.com

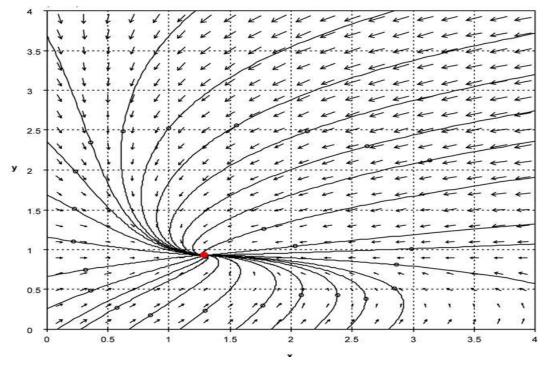


Fig.3(C): Threshold Diagram

Case(iv): When a_1 =0.256, a_{11} =0.578, a_{12} =0.454, , h_1 =0.645 and a_2 =0.679, h_2 =0.632.

The Null clines, Trajectories and Solution curves are drawn in the Fig.4(A), Fig.4(B), & Fig.4(C).

In this case, The Eigen values are -0.50128 and -0.678 with the eigen vectors (1, 5.70161E-16) & (0,1). The

Jacobean matrix is
$$\begin{pmatrix} 0.50128 & -0.58416 \\ 0 & -0.678 \end{pmatrix}$$

The equilibrium point of this system exists at (6.3684, 0.93215)

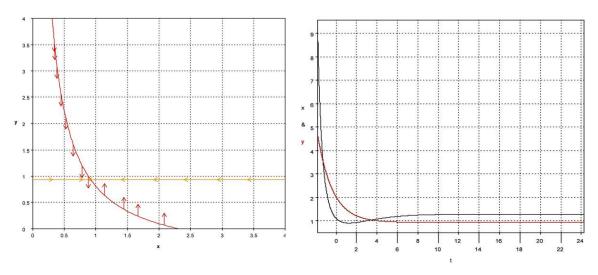


Fig.4(A): Null clines

Fig.4(B): Solution Curves

Vol. No.5, Issue No. 10, October 2016

www.ijarse.com

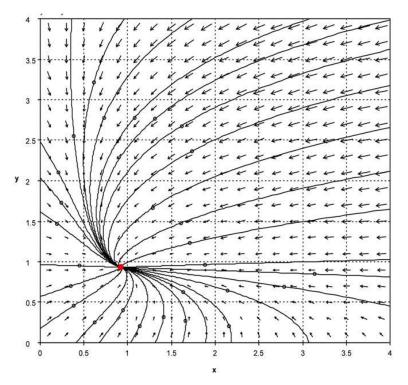


Fig.4(C): Threshold Diagram

Case(v): When a_1 =0.056, a_{11} =0.578, a_{12} =0.454, h_1 =0.645 and a_2 =0.679, h_2 =0.632.

The Null clines, Trajectories and Solution curves are drawn in the Fig.5(A), Fig.5(B), & Fig.5(C).

In this case, The Eigen values -0.678 and -0.70128 with the eigen vectors ((0.99845, -0.055669) & (0,1). The

Jacobean matrix is
$$\begin{pmatrix} 0.70128 & -0.417566 \\ 0 & -0.678 \end{pmatrix}$$

The equilibrium point of this system occurs at (6.3684, 0.93215)

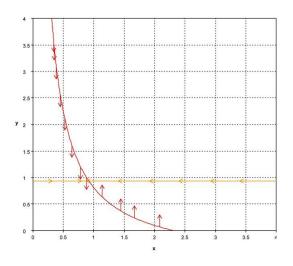


Fig.5(A): Null clines

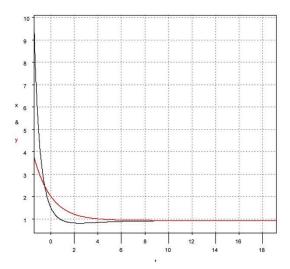
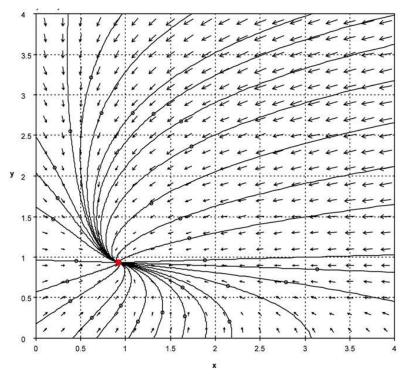



Fig.5(B): Solution Curves

Vol. No.5, Issue No. 10, October 2016 www.ijarse.com

Fig5(C): Solution Curves

IV. CONCLUSIONS

The nature of Stability in Ecological Ammensalism with mortality of both the species is discussed. The stability of this model can be achieved at the least growth rate of Ammensal Species with the fixed growth rate of Enemy species. In this case, the system will not be altered with the influence of the Ammensal coefficient. The enemy species decreases through out the interval.But Ammnsal Species has no dominant nature initially.After onwards, it overcomes the enemy Species with gradual dominance.

REFERENCES

- [1] K.V.L.N.Acharyulu & Pattabhi Ramacharyulu. N.Ch..; "On The Stability of An Ammensal Harvested Enemy Species Pair With Limited Resources" in "International journal of computational Intelligence Research (IJCIR)", Vol.6, No.3; pp.343-358, June 2010.
- [2] N.Phani Kumar, K.V.L.N.Acharyulu,S.V.Vasavi & SK.Khamar Jahan, A Series Solution of Ecological Harvested Commensal Model by Homotopy Perturbation Method, International Journal of Scientific and Innovative Mathematical Research (IJSIMR), Volume 3, Issue 11, pp 44-53, 2015.
- [3] K.V.L.N.Acharyulu, N.Phani Kumar, G.Bhargavi & K.Nagamani, Ecological Harvested Ammensal Model- A Homotopy Analysis, International Journal of Scientific and Innovative Mathematical Research (IJSIMR), Volume 3,Issue 12, pp 27-35,2015.
- [4] Dr.K.V.L.N.Acharyulu & Dr.Phani Kumar, Ecological Ammensalism-A Series Solution By Homotopy Perturbation Method, Acta Ciencia Indica, Vol.41, No.4, 295-304, 2015.

Vol. No.5, Issue No. 10, October 2016

www.ijarse.com

IJARSE ISSN (0) 2319 - 8354 ISSN (P) 2319 - 8346

- [5] Dr.K.V.L.N.Acharyulu, A Peculiar Case of Unlimited Resources in Ecological Ammensalism, International Journal of Advanced Technology in Engineering and Science (IJATES), Volume 4, Issue 8, pp 501-506, 2016.
- [6] Dr.K.V.L.N.Acharyulu, A Phase Plane Analysis of A Peculiar Case of Ecological Ammensalism, International Journal of Advance research in science and Engineering (IJARSE), Volume 5, Issue 8, pp 618-623,2016.
- [7] Dr.K.V.L.N.Acharyulu, A Special Case Of Ecological Commensalism- Phase Plane Analysis, International Journal of Advanced Technology in Engineering and Science (IJATES), Volume 4, Issue 9, pp 351-356,2016.
- [8] Dr.K.V.L.N.Acharyulu, Phase Plane Analysis On Ammensal Model With Limited Resources, International Journal of Computer & Mathematical Science (IJCMS), Volume 5, Issue 9, pp 55-61, 2016.
- [9] Dr.K.V.L.N.Acharyulu & Dr.Phani Kumar, Ammensalism with Mortal Enemy Species Series Solution, International Journal of Advance research in science and Engineering (IJARSE), Volume 5, Issue 9, pp 470-477, 2016.
- [10] Dr.K.V.L.N.Acharyulu & Dr.Phani Kumar, Phase Plane Analysis on Ammensalism with Mortal Enemy Species, International Journal of Advance research in science and Engineering (IJATES), Volume4, Issue 9, pp 654-660, 2016.
- [11] H.I. Freedman. 1934. Stability analysis of Predator -Prey model with mutual interference and density dependent death rates, Williams and Wilkins, Baltimore.
- [12] G.F. Gause.1934. The Struggle for Existence. Baltimore, MD, Williams and Wilkins.
- [13] R. Haberman. 1977. Mathematical Models, Prentice Hall, New Jersey, USA.
- [14] J.N. Kapur. 1988. Mathematical Modeling, Wiley-Eastern, New Delhi.
- [15] A.J. Lotka. 1925. Elements of Physical Biology, Baltimore, Williams and Wilkins.
- [16] W.J. Meyer. 1985. Concepts of Mathematical Modeling, McGraw-Hill.
- [17] Paul Colinvaux. 1986. Ecology, John Wiley and Sons, Inc., New York.
- [18] E.C. Pielou. 1977. Mathematical Ecology, New York, John Wiley and Sons.
- [19] D.W.Thompson, On Growth and Form, Cambridge, Cambridge University Press, 1917.
- [20] V.Volterra. 1931. Lecons sen Lu theorie mathematique de la luitte pour la vie, Gauthier-Villars, Paris.

AUTHOR'S BIOGRAPHY

Dr.K.V.L.N.Acharyulu: He is working as Associate Professor in the Department of Mathematics, Bapatla Engineering College, Bapatla which is a prestigious institution of Andhra Pradesh. He took his M.Phil. Degree in Mathematics from the University of Madras and stood in first Rank,R.K.M. Vivekananda College,Chennai. Nearly for the last fourteen years he is rendering his services to the students and he is applauded by one and all for his best way of teaching. He has participated in some seminars and presented his papers on various topics. More than 95 articles were published in various International high impact factor Journals. He is a Member of Various Professional Bodies and created three world records in research field. He authored 3 books and edited many books. He received so many awards and rewards for his research excellency in the field of Mathematics.