Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

NEW CLASS OF MEROMORPHIC MULTIVALENT FUNCTIONS BY USING DERIVATIVE OPERATOR

Amruta Patil¹, S. M. Khairnar² and B. R. Ahirrao³

¹Department of Mathematics, AISSMS, Institute of
Information Technology, Shivajinagar, Pune

²Department of Applied Sciences, MIT Academy of
Engineering, Alandi, Pune (M. S.), (India)

³Department of Mathematics, Z. B. Patil College, Dhule

ABSTRACT

In this article, we have introduced a new class $S^{\lambda,m}(\vartheta,\alpha,\mu)$ of meromorphic multivalent functions defined by Ruscheweyh derivative operator. We also obtained some geometric properties. All the results are sharp.

Keywords: Meromorphic Function, Multivalent Function, Derivative Operator, Distortion, Extreme Points, Arithmetic Mean

2010 Mathematics Subject Classification: 30C45

I. INTRODUCTION

Let A_m denote the class of functions f(z) of the form:

$$f(z)=z^{-m}+\textstyle\sum_{k=1}^{\infty}a_{k-m}z^{k-m}\;,\qquad a_{k-m}\geq 0, m\in N$$

Which are analytic and meromorphic multivalent in the punctured unit disc $U^* = \{z \in C: 0 < |z| < 1\}$.

Consider the subclass T_m of the function of the form: $f(z) = z^{-m} + \sum_{k=1}^{\infty} a_{k-m} z^{k-m}$, $a_{k-m} \ge 0, m \in \mathbb{N}$ (1)

The convolution of two functions, f(z) is given by (1) and $g(z) = z^{-m} + \sum_{k=1}^{\infty} b_{k-m} z^{k-m}$, $b_{k-m} \ge 0$ is defined by

$$(f * g)(z) = z^{-m} + \sum_{k=1}^{\infty} a_{k-m} b_{k-m} z^{k-m}, \quad a_{k-m} b_{k-m} \ge 0$$

We shall required Ruscheweyh derivative operator for the function belonging to the class T_m which is defined by the following convolution, $D^{\lambda,m} = \frac{z^{-m}}{(1-z)^{\lambda+m}} * f(z)$, $\lambda > -m, f \in T_m$ (2)

In terms of binomial coefficients (2) can be written as

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

$$D^{\lambda,m} = z^{-m} + \sum_{k=1}^{\infty} {\lambda + k \choose k} a_{k-m} z^{k-m} \qquad \lambda > -m, f \in T_m$$
 (3)

Atshan, Mustafa and Mouajeeb (2013) was studied a class of meromorphic multivalent functions by linear derivative operator. The linear operator $D^{\lambda,1}$ was studied by Raina and Srivastava (2006). Also the operator $D^{\lambda,p}$ analogous to $D^{\lambda,m}$ was studied by Goyal Prajapat (2009).

A function $f \in T_m$ is meromorphic multivalent starlike function of order ρ , $0 \le \rho < m$ if

$$-Re\left\{\frac{zf'(z)}{f(z)}\right\} > \rho$$
 $(0 \le \rho < m, z \in U^*)$ (4)

A function $f \in T_m$ is meromorphic multivalent convex function of order ρ , $0 \le \rho < m$ if

$$-Re\left\{1 + \frac{zf^{''}(z)}{f(z)}\right\} > \rho \qquad \qquad (0 \le \rho < m, z \in U^*) \tag{5}$$

Definition (01): Let $f \in T_m$ is given by (1). The class $S^{\lambda,m}(\vartheta,\alpha,\mu)$ is defined by

$$S^{\lambda,m}\left\{f\in T_m\colon \left|\frac{\theta\left(\left(\mathcal{D}^{\lambda,m}f(z)\right)-\frac{\mathcal{D}^{\lambda,m}f(z)}{z}\right)}{\alpha\left(\mathcal{D}^{\lambda,m}f(z)\right)+(1-\theta)\frac{\mathcal{D}^{\lambda,m}f(z)}{z}}\right|<\mu,\ 0\leq\vartheta<1\ 0\leq\alpha<1, 0<\mu<1, \lambda>-m, m\in\mathbb{N}\right\} \tag{6}$$

II. COEFFICIENT INEQUALITY

Theorem (01): Let a function $f \in T_m$ then the function $f \in S^{\lambda,m}(\vartheta,\alpha,\mu)$, if and only if

$$\sum_{k=1}^{\infty} {\lambda+k \choose k} \left[\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta) \right] a_{k-m} \le \mu(1-m\alpha-\vartheta) - \vartheta(m+1)$$

$$(0 \le \vartheta < 1 \ 0 \le \alpha < 1, 0 < \mu < 1, \lambda > -m, m \in N) \tag{7}$$

The result is sharp for the function f(z) given by

$$f(z) = z^{-m} + \sum_{k=1}^{\infty} \frac{\mu(1-m\alpha-\theta)-\theta(m+1)}{\binom{\lambda+k}{k} [\theta(k-m-1)-\mu(\alpha(k-m)+1-\theta)]} z^{k-m}.$$

Proof: Assume that the inequality (7) is hold true and let |z| = 1 then from (6) we have

$$\left|\vartheta\left(\left(D^{\lambda,m}f(z)\right)' - \frac{D^{\lambda,m}f(z)}{z}\right)\right| - \mu\left|\alpha\left(D^{\lambda,m}f(z)\right)' + (1-\vartheta)\frac{D^{\lambda,m}f(z)}{z}\right|$$

$$= \left|\vartheta \sum_{k=1}^{\infty} {\lambda+k \choose k} (k-m-1) a_{k-m} z^{k-m} - (m+1)\vartheta z^{-m-1} \right| \\ -\mu \left| (1-m\alpha-\vartheta) z^{-m-1} + \sum_{k=1}^{\infty} {\lambda+k \choose k} (\alpha(k-m)+1-\vartheta) a_{k-m} z^{k-m} \right|$$

$$\leq \sum_{k=1}^{\infty} \binom{\lambda+k}{k} \left[\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta)\right] a_{k-m} - \mu(1-m\alpha-\vartheta) + \vartheta(m+1) \leq 0.$$

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

Hence by maximum modulus principle, $f \in S^{\lambda,m}(\vartheta,\alpha,\mu)$.

Conversely, assume that f(z) defined by (1) is in the class $S^{\lambda,m}(\theta,\alpha,\mu)$.

Hence,
$$\left|\frac{\theta\left(\left(D^{\lambda,m}f(z)\right)-\frac{D^{\lambda,m}f(z)}{z}\right)}{\alpha\left(D^{\lambda,m}f(z)\right)+(1-\theta)\frac{D^{\lambda,m}f(z)}{z}}\right|$$

$$=\left|\frac{-\vartheta(m+1)z^{-m}+\vartheta\sum_{k=1}^{\infty}(k-m-1)\binom{\lambda+k}{k}a_{k-m}z^{k-m-1}}{(1-m\alpha-\vartheta)z^{-m-1}+\sum_{k=1}^{\infty}(\alpha(k-m)+1-\vartheta)\binom{\lambda+k}{k}a_{k-m}z^{k-m-1}}\right|<\mu.$$

Notice that Re(z) < |z| for any z we have,

$$Re\left\{\frac{\theta \sum_{k=1}^{\infty} (k-m-1) \binom{\lambda+k}{k} a_{k-m} z^{k-m} - \theta(m+1) z^{-m-1}}{(1-m\alpha-\theta) z^{-m-1} + \sum_{k=1}^{\infty} (\alpha(k-m)+1-\theta) \binom{\lambda+k}{k} a_{k-m} z^{k-m-1}}\right\}$$
(8)

Let $z \rightarrow 1^-$ through real values, (8) yields

$$\sum\nolimits_{k=1}^{\infty} \binom{\lambda+k}{k} \left[\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta)\right] a_{k-m} \leq \mu(1-m\alpha-\vartheta) - \vartheta(m+1).$$

Finally sharpness follows if we take,

$$f(z) = z^{-m} + \sum_{k=1}^{\infty} \frac{\mu^{(1-m\alpha-\theta)-\theta(m+1)}}{\binom{\lambda+k}{k} [\theta^{(k-m-1)-\mu(\alpha(k-m)+1-\theta)}]} \, z^{k-m}, \qquad k \geq 1.$$

Corollary (01)

Let
$$f \in S^{\lambda,m}(\vartheta,\alpha,\mu)$$
 then $\alpha_{k-m} \leq \frac{\mu(1-m\alpha-\vartheta)-\vartheta(m+1)}{\binom{\lambda+k}{k}[\vartheta(k-m-1)-\mu(\alpha(k-m)+1-\vartheta)]}$ where

$$0 \le \vartheta < 1$$
 $0 \le \alpha < 1, 0 < \mu < 1, \lambda > -m, m \in N$.

III. CONVEX SET

Theorem (02): Let the functions $f(z) = z^{-m} + \sum_{k=1}^{\infty} a_{k-m} z^{k-m}$, $a_{k-m} \ge 0$

$$g(z)=z^{-m}+\sum_{k=1}^{\infty}b_{k-m}z^{k-m}\;,\qquad b_{k-m}\geq 0\;\;\text{be in the class}\;S^{\lambda,m}(\vartheta,\alpha,\mu).\;\text{Then for}\;0\leq l\leq 1,\;\text{the function}$$

$$d(z)=(1-l)f(z)+l\,g(z)=z^{-m}+\sum_{k=1}^{\infty}c_{k-m}z^{k-m} \qquad \qquad (9)$$

Where $c_{k-m} = (1-l)a_{k-m} + lb_{k-m} \ge 0$ is also in the class $S^{\lambda,m}(\vartheta,\alpha,\mu)$.

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

Proof: Suppose that each of the functions f and g is in the class $S^{\lambda m}(\vartheta, \alpha, \mu)$. Then making use of theorem (01) we see that,

$$\sum\nolimits_{k=1}^{\infty} \binom{\lambda+k}{k} \left[\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta)\right] c_{k-m}$$

$$= (1-l)\sum\nolimits_{k=1}^{\infty} \binom{\lambda+k}{k} \left[\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta)\right] a_{k-m}$$

$$+l\sum_{k=1}^{\infty} {\lambda+k \choose k} [\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta)]a_{k-m}$$

$$\leq (1-l)\left[\mu(1-m\alpha-\vartheta)-\vartheta(m+1)\right]+l\left[\mu(1-m\alpha-\vartheta)-\vartheta(m+1)\right]$$

 $\leq [\mu(1 - m\alpha - \vartheta) - \vartheta(m+1)]$, which completes the proof.

IV. EXTREME POINTS

Theorem (03): Let $f_{-m} = z^{-m}$, and

$$f_{k-m}(z) = z^{-m} + \frac{\mu(1-m\alpha-\theta)-\theta(m+1)}{(\lambda_{k}^{+k})[\theta(k-m-1)-\mu(\alpha(k-m)+1-\theta)]} z^{k-m}$$
(10)

For k = 1, 2, ... Then $f \in S^{\lambda, m}(\vartheta, \alpha, \mu)$ if and only if it can be expressed in the form,

$$f(z) = \sum_{k=0}^{\infty} d_{k-m} f_{k-m}(z)$$
, where $d_{k-m} \ge 0$ and $\sum_{k=0}^{\infty} d_{k-m} = 1$.

Proof: Suppose that $f(z) = \sum_{k=0}^{\infty} d_{k-m} f_{k-m}(z)$ where $d_{k-m} \ge 0$ and $\sum_{k=0}^{\infty} d_{k-m} = 1$.

Then

$$f(z) = d_{-m}f_{-m}(z) + \sum_{k=1}^{\infty} d_{k-m}f_{k-m}(z).$$

$$\begin{split} &=d_{-m}z^{-m}+\sum\nolimits_{k=1}^{\infty}d_{k-m}\left(z^{-m}+\frac{\mu(1-m\alpha-\vartheta)-\vartheta(m+1)}{\binom{\lambda+k}{k}\left[\vartheta(k-m-1)-\mu(\alpha(k-m)+1-\vartheta)\right]}z^{k-m}\right)\\ &=z^{-m}+\sum\nolimits_{k=1}^{\infty}\frac{\mu(1-m\alpha-\vartheta)-\vartheta(m+1)}{\binom{\lambda+k}{k}\left[\vartheta(k-m-1)-\mu(\alpha(k-m)+1-\vartheta)\right]}z^{k-m} \end{split}$$

$$=z^{-m}+\textstyle\sum_{k=1}^{\infty}P_{k-m}z^{k-m} \text{ where } P_{k-m}=\frac{\mu(1-m\alpha-\theta)-\theta(m+1)}{\binom{\lambda+k}{k}[\theta(k-m-1)-\mu(\alpha(k-m)+1-\theta)]}$$

By theorem (01), we have
$$f \in S^{\lambda,m}(\vartheta,\alpha,\mu)$$
 if and only if $\sum_{k=1}^{\infty} \frac{\binom{\lambda+k}{k} [l\vartheta(k-m-1)-\mu(\alpha(k-m)+1-\vartheta)]}{\mu(1-m\alpha-\vartheta)-\vartheta(m+1)} P_{k-m} \leq 1$,

For
$$f(z) = z^{-m} + \sum_{k=1}^{\infty} P_{k-m} z^{k-m}$$

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

Hence
$$\sum_{k=1}^{\infty} \frac{\binom{\lambda+k}{k} [l\theta \cdot (k-m-1) - \mu(\alpha(k-m)+1-\theta)]}{\mu \cdot (1-m\alpha-\theta) - \theta(m+1)} \times d_{k-m} \frac{\mu \cdot (1-m\alpha-\theta) - \theta \cdot (m+1)}{\binom{\lambda+k}{k} [l\theta \cdot (k-m-1) - \mu(\alpha(k-m)+1-\theta)]}$$

$$= \sum\nolimits_{k = 1}^\infty {{d_{k - m}}} = 1 - {d_{ - m}} \le 1$$

Conversely, assume that $f \in S^{\lambda,m}(\vartheta,\alpha,\mu)$. Then we can show that f can be written in the form

$$f(z) = \sum_{k=0}^{\infty} d_{k-m} f_{k-m}(z).$$

Now
$$f \in S^{\lambda,m}(\vartheta,\alpha,\mu)$$

Therefore from theorem (01)

$$a_{k-m} \leq \frac{\mu(1-m\alpha-\vartheta)-\vartheta\left(m+1\right)}{\binom{\lambda+k}{k}\left[\vartheta(k-m-1)-\mu(\alpha(k-m)+1-\vartheta)\right]}$$

Setting

$$d_{k-m} = \frac{\binom{\lambda+k}{k} \left[\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta)\right]}{\mu(1-m\alpha-\vartheta) - \vartheta(m+1)} a_{k-m} \qquad k=1,2,\dots$$

And

$$d_{-m} = 1 - \sum_{k=1}^{\infty} d_{k-m}$$

Then
$$f(z) = z^{-m} + \sum_{k=1}^{\infty} a_{k-m} z^{k-m}$$

$$f(z) = z^{-m} + \sum\nolimits_{k=1}^{\infty} \frac{\mu(1-m\alpha-\vartheta) - \vartheta(m+1)}{\binom{\lambda+k}{k} \left[\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta)\right]} \, d_{k-m}$$

$$= z^{-m} + \sum\nolimits_{k=1}^{\infty} (f_{k-m} - z^{-m}) d_{k-m}$$

$$= z^{-m} \left(1 - \sum_{k=1}^{\infty} d_{k-m} \right) + \sum_{k=0}^{\infty} d_{k-m} f_{k-m}$$

$$= z^{-m}d_{-m} + \sum_{k=1}^{\infty} d_{k-m}f_{k-m}$$

$$= \sum\nolimits_{k=0}^{\infty} d_{k-m} f_{k-m}(z)$$

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

V. DISTORTION AND COVERING THEOREM

Theorem (04): Let $f \in S^{\lambda,m}(\vartheta,\alpha,\mu)$ then for 0 < |z| < 1

$$\frac{1}{|z|^m} - \frac{\vartheta\left(m+1\right) - \mu(1-m\alpha-\vartheta)}{\left(\frac{\lambda+1}{1}\right)\left[\vartheta m + \mu(\alpha(1-m)+1-\vartheta)\right]} |z|^{1-m} \leq |f(z)| \leq$$

$$\frac{1}{|z|^m} + \frac{\theta (m+1) - \mu(1-m\alpha-\theta)}{\left(\frac{\lambda}{+}\right) \left[\theta m + \mu(\alpha(1-m)+1-\theta)\right]} |z|^{1-m}$$
(11)

The result (11) is sharp for the function f(z) given by

$$f(z) = \frac{1}{|z|^m} + \frac{\theta(m+1) - \mu(1-m\alpha-\theta)}{\binom{\lambda+1}{1}[\theta m + \mu(\alpha(1-m)+1-\theta)]} |z|^{1-m}.$$

Proof: Let $f \in S^{\lambda,m}(\vartheta,\alpha,\mu)$ then

$$|f(z)| = \left|z^{-m} + \sum_{k=1}^{\infty} a_{k-m} z^{k-m}\right|$$

$$\leq \tfrac{1}{|z|^m} + \textstyle \sum_{k=1}^{\infty} \alpha_{k-m} |z|^{|k-m|}$$

$$\leq \frac{1}{|z|^m} + |z|^{1-m} \sum_{k=1}^{\infty} a_{k-m}$$

Therefore by theorem (01),

$$a_{k-m} \leq \frac{\vartheta\left(m+1\right) - \mu(1-m\alpha-\vartheta)}{\binom{\lambda+1}{1}\left[\vartheta m + \mu(\alpha(1-m)+1-\vartheta)\right]}$$

Therefore

$$|f(z)| \leq \frac{1}{|z|^m} + \frac{\vartheta(m+1) - \mu(1-m\alpha-\vartheta)}{\binom{\lambda+1}{1} \left[\vartheta m + \mu(\alpha(1-m)+1-\vartheta)\right]} |z|^{1-m}$$

Similarly, we have

$$|f(z)| \geq \frac{1}{|z|^m} - \frac{\vartheta(m+1) - \mu(1-m\alpha-\vartheta)}{\binom{\lambda+1}{1} [\vartheta m + \mu(\alpha(1-m)+1-\vartheta)]} |z|^{1-m}.$$

Theorem (05): Let $f \in S^{\lambda,m}(\vartheta,\alpha,\mu)$ then for 0 < |z| < 1

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

 $\frac{m}{|z|^{m+1}} - \frac{\lfloor \vartheta(m+1) - \mu(1-m\alpha-\vartheta) \rfloor (1-m)}{\binom{\lambda+1}{1} \lfloor \vartheta m + \mu(\alpha(1-m)+1-\vartheta) \rfloor} |z|^{-m} \leq |f'(z)| \leq$

$$\frac{m}{|z|^{m+1}} + \frac{[\theta(m+1) - \mu(1-m\alpha-\theta)](1-m)}{\binom{\lambda+1}{1}[\theta m + \mu(\alpha(1-m)+1-\theta)]} |z|^{-m}$$
(12)

The result (12) is sharp for the function f(z) given by

$$f(z) = \frac{m}{|z|^{m+1}} + \frac{\lfloor \vartheta(m+1) - \mu(1-m\alpha-\vartheta) \rfloor(1-m)}{\binom{\lambda+1}{1} \left[\vartheta m + \mu(\alpha(1-m)+1-\vartheta)\right]} |z|^{-m}.$$

Proof: Let $f \in S^{\lambda,m}(\vartheta,\alpha,\mu)$ then

$$\begin{split} |f(z)| &= \left|z^{-m} + \sum_{k=1}^{\infty} a_{k-m} z^{k-m}\right| \\ &|f'(z)| = \left|-m z^{-m-1} + \sum_{k=1}^{\infty} (k-m) a_{k-m} z^{k-m-1}\right| \\ &\leq \frac{m}{|z|^{m+1}} + \sum_{k=1}^{\infty} (k-m) a_{k-m} |z|^{k-m-1} \\ &\leq \frac{m}{|z|^{m+1}} + |z|^{-m} \sum_{k=1}^{\infty} (1-m) a_{k-m} \end{aligned}$$

By theorem (01), we have

$$\left|f^{'}(z)\right| \leq \frac{m}{|z|^{m+1}} + \frac{\lfloor \vartheta(m+1) - \mu(1-m\alpha-\vartheta)\rfloor(1-m)}{\binom{\lambda+1}{1} \left[\vartheta m + \mu(\alpha(1-m)+1-\vartheta)\right]} |z|^{-m}$$

Similarly, we have

$$\left|f^{'}(z)\right| \geq \frac{m}{|z|^{m+1}} - \frac{\lfloor \vartheta(m+1) - \mu(1-m\alpha-\vartheta)\rfloor(1-m)}{\binom{\lambda+1}{1} \left[\vartheta m + \mu(\alpha(1-m)+1-\vartheta)\right]} |z|^{-m}$$

VI. ARITHMATIC MEAN

Theorem (06): Let $f_1(z)$, $f_2(z)$... $f_n(z)$ defined by

$$f_i(z) = z^{-m} + \sum_{k=1}^{\infty} a_{k-m,i} z^{k-m} \quad (a_{k-m,i} \ge 0, i = 1, 2, ..., n, k \ge 1)$$
 (13)

be in the class $S^{\lambda,m}(\vartheta,\alpha,\mu)$. Then the arithmetic mean of $f_i(z)$ (i=1,2,...n) is defined by

$$h(z) = \frac{1}{n} \sum_{i=1}^{n} f_i(z)$$
 (14)

ISSN (P) 2319 - 8346

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

is also in the class $5^{\lambda m}(\vartheta, \alpha, \mu)$.

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

Proof: By (13) and (14) we can write

$$\begin{split} h(z) &= \frac{1}{n} \sum_{i=1}^{n} \left(z^{-m} + \sum_{k=1}^{\infty} a_{k-m,i} z^{k-m} \right) \\ &= z^{-m} + \sum_{k=1}^{\infty} \left(\frac{1}{n} \sum_{i=1}^{n} a_{k-m,i} \right) z^{k-m} \end{split}$$

Since $f_i \in S^{\lambda,m}(\vartheta,\alpha,\mu)$ for every (i = 1,2,...n) so by theorem (01),

We prove that

$$\begin{split} &\sum_{k=1}^{\infty} \binom{\lambda+k}{k} \left[\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta) \right] \left(\frac{1}{n} \sum_{i=1}^{n} a_{k-m,i} \right) \\ &= \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{k=1}^{\infty} \binom{\lambda+k}{k} \left[\vartheta(k-m-1) - \mu(\alpha(k-m)+1-\vartheta) \right] a_{k-m,i} \right) \\ &\leq \frac{1}{n} \sum_{i=1}^{n} \mu(1-m\alpha-\vartheta) - \vartheta(m+1) \\ &= \mu(1-m\alpha-\vartheta) - \vartheta(m+1) \end{split}$$

Therefore $h(z) \in S^{\lambda,m}(\vartheta,\alpha,\mu)$.

VII. δ NEIGHBORHOODS

Definition (02): Let $(0 \le \vartheta < 1 \ 0 \le \alpha < 1, 0 < \mu < 1, \lambda > -m, m \in \mathbb{N})$ and $\delta \ge 0$ we define δ neighborhood of function $f \in T_m$ and denote $N_{\delta}(f)$ such that

$$N_{\delta}(f) = \left\{ g \in T_m : g(z) = z^{-m} + \sum_{k=1}^{\infty} b_{k-m} z^{-m} \text{ and } \sum_{k=1}^{\infty} \frac{\binom{\lambda_k k}{k} [\theta(k-m-1) - \mu(\alpha(k-m) + 1 - \theta)]}{\mu(1 - m\alpha - \theta) - \theta(m+1)} |a_k - b_k| \le \delta \right\}. \tag{15}$$

Theorem (07): Let function $f \in T_m$ be in the class $S^{\lambda,m}(\vartheta,\alpha,\mu)$, for every complex number β with $|\beta| < \delta, \delta \ge 0$.

Let
$$\frac{f(z)+\beta z^{-m}}{1+\beta} \in S^{\lambda,m}(\vartheta,\alpha,\mu)$$
 then $N_{\delta}(f) \in S^{\lambda,m}(\vartheta,\alpha,\mu)$, $\delta \geq 0$.

Proof: Since $f(z) \in S^{\lambda,m}(\vartheta,\alpha,\mu)$, f satisfies (7) and we can write for $n \in C$, |n| = 1, that

$$\left[\frac{\theta\left(\left(D^{\lambda,m}f(z)\right) - \frac{D^{\lambda,m}f(z)}{z}\right)}{\alpha\left(D^{\lambda,m}f(z)\right) + (1-\theta)\frac{D^{\lambda,m}f(z)}{z}} \right] \neq n$$
(16)

www.ijarse.com

IJARSE ISSN (O) 2319 - 8354 ISSN (P) 2319 - 8346

Equivalently, we must have
$$\frac{(f \cdot Q)(z)}{z^{-m}} \neq 0$$
, $z \in U^*$ (17)

Where
$$Q(z) = z^{-m} + \sum_{k=1}^{\infty} e_{k-m} z^{k-m}$$

Such that
$$e_{k-m} = \frac{n\binom{\lambda+k}{k}[\theta(k-m-1)-\mu(\alpha(k-m)+1-\theta)]}{\mu(1-m\alpha-\theta)-\theta(m+1)}$$

Satisfying
$$|_{\theta_{k-m}}| \leq \frac{n\binom{\lambda+k}{k}[\theta(k-m-1)-\mu(\alpha(k-m)+1-\theta)]}{\mu(1-m\alpha-\theta)-\theta(m+1)}$$
 and $k \geq 1, m \in \mathbb{N}$

Since
$$\frac{f(z)+\beta z^{-m}}{1+\beta} \in S^{\lambda,m}(\vartheta,\alpha,\mu)$$

By (17)
$$\frac{1}{z^{-m}} \left(\frac{f(z) + \beta z^{-m}}{1 + \beta} * Q(z) \right) \neq 0$$
 (18)

Now we assume that, $\left| \frac{(f \cdot Q)z}{z^{-m}} \right| < \delta$ so by (18), we get

$$\left|\frac{1}{1+\beta}\frac{(f*Q)z}{z^{-m}} + \frac{\beta}{1+\beta}\right| \ge \frac{|\beta|}{|1+\beta|} - \frac{1}{|1+\beta|}\left|\frac{(f*Q)z}{z^{-m}}\right| > \frac{|\beta|-\delta}{|1+\beta|} \ge 0$$

Which is a contradiction by $|\beta| < \delta$. However, we have $\left|\frac{(f \cdot Q)z}{z^{-m}}\right| \ge \delta$. If $g(z) = z^{-m} + \sum_{k=1}^{\infty} b_{k-m} z^{k-m} \in N_{\delta}(f)$, then

$$\delta - \left| \frac{(g * Q)z}{z^{-m}} \right| \le \left| \frac{(f - g) * Q(z)}{z^{-m}} \right|$$

$$\leq \left| \sum\nolimits_{k=1}^{\infty} (a_{k-m} - b_{k-m}) e_{k-m} z^{k-m} \right|$$

$$\leq \sum\nolimits_{k = 1}^\infty {| \, a_{k - m} - b_{k - m} || \, e_{k - m} || \, z|^{\, k - m} }$$

$$<|z|^{k-m}\sum\nolimits_{k=1}^{\infty}\left[\frac{\binom{\lambda+k}{k}\left[\vartheta(k-m-1)-\mu(\alpha(k-m)+1-\vartheta)\right]}{\mu(1-m\alpha-\vartheta)-\vartheta(m+1)}\left|a_{k-m}-b_{k-m}\right|\right.\\ \leq \delta^{m}\left[\frac{(\lambda+k)\left[\vartheta(k-m-1)-\mu(\alpha(k-m)+1-\vartheta)\right]}{\mu(1-m\alpha-\vartheta)-\vartheta(m+1)}\right]$$

Therefore,
$$\left|\frac{(g \cdot Q) z}{z^{-m}}\right| \neq 0$$
 we get $g(z) \in S^{\lambda, m}(\vartheta, \alpha, \mu)$

So
$$N_{\delta}(f) \in S^{\lambda,m}(\vartheta,\alpha,\mu)$$
, $\delta \geq 0$.

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

VIII. PARTIAL SUM

Theorem (08): Let f(z) is defined by (1) and the partial sum $S_1(z)$ and $S_q(z)$ be defined by $S_1(z) = z^{-m}$ and $S_q(z) = z^{-m} + \sum_{k=1}^{q-1} a_{k-m} z^{k-m}$ (q > 1).

Also, suppose that, $\sum_{k=1}^{\infty} c_{k-m} a_{k-m} \leq 1$

where
$$c_{k-m} = \frac{\binom{\lambda+k}{k} \left[\theta \left(k-m-1\right) - \mu\left(\alpha \left(k-m\right) + 1 - \theta\right)\right]}{\mu \left(1-m\alpha-\theta\right) - \theta \left(m+1\right)}$$
 (19)

then we have
$$Re\left\{\frac{f(z)}{S_q(z)}\right\} > 1 - \frac{1}{c_q}$$
 (20)

$$Re\left\{\frac{f(z)}{s_{\sigma}(z)}\right\} > 1 - \frac{c_q}{1+c_{\sigma}}, \qquad (z \in U^*, q > 1)$$
 (21)

Each of the bounds in (19) and (20) is the best possible for $k \in N$.

Proof: For the coefficients c_{k-m} given by (19), it is not difficult to verify

$$c_{k-m+1} > c_{k-m} > 1$$
, $k = 1,2 ...$

Therefore by using the hypothesis (19) we have

$$\sum_{k=1}^{q-1} a_{k-m} + c_q \sum_{k=q}^{\infty} a_{k-m} \le \sum_{k=1}^{\infty} c_{k-m} a_{k-m} \le 1$$
 (22)

By setting,
$$G_1(z) = c_q \left(\frac{f(z)}{S_q(z)} - \left(1 - \frac{1}{c_q} \right) \right)$$

$$=\frac{f(z)}{S_q(z)}c_q-c_q+1$$

$$=\frac{c_q\big(f(z)-S_q(z)\big)}{S_q(z)}+1$$

$$= \frac{c_q \sum_{k=q}^{\infty} a_{k-m} z^{k-m}}{z^{-m} + \sum_{k=1}^{q-1} a_{k-m} z^{k-m}} + 1$$

$$= \frac{c_q \sum_{k=q}^{\infty} a_{k-m} z^k}{1 + \sum_{k=1}^{q-1} a_{k-m} z^k} + 1$$

By using (22) we get

Vol. No.5, Issue No. 09, September 2016

www.ijarse.com

$$\left| \frac{G_1(z) - 1}{G_1(z) + 1} \right| = \left| \frac{c_q \sum_{k=q}^{\infty} a_{k-m} z^k}{c_q \sum_{k=q}^{\infty} a_{k-m} z^k + 2 + 2 \sum_{k=1}^{q-1} a_{k-m} z^k} \right|$$

$$\leq \frac{c_q \sum_{k=q}^{\infty} a_{k-m}}{2-2\sum_{k=1}^{q-1} a_{k-m}-c_q \sum_{k=q}^{\infty} a_{k-m}} \leq 1$$

This proof (20). Hence $Re(G_1(z)) > 0$ and we get

$$Re\left\{\frac{f(z)}{S_{\sigma}(z)}\right\} > 1 - \frac{1}{c_{\sigma}}.$$

Now, in this way we can prove the statement (21) by setting

$$G_2(z) = (1 + c_q) \left(\frac{S_q(z)}{f(z)} - \frac{c_q}{1 + c_g} \right)$$

REFERENCES

- [1] Atshan, W. G., H.J. Mustafa and E.K. Mouajeeb, 2013. A Linear Operator of a New Class of Meromorphic Multivalent Functions, J. Asi. Sci. Res., 3(7):734-746.
- [2] Altintas. O. and Owa, 1996. Neighborhoods of certain analytic functions with negative coefficients. IJMMS, 19:797-800.
- [3] Atshan, W. G. and S.R. Kulkarni, 2009. On applications of differential subordination for certain subclass of meromorphically p-valent functions with positive coefficients defined by linear operator. J. Ineq. Pure Appl. Math, 10(2): 11.
- [4] Goyal, S.P. and J.K. Prajapat, 2009. A new class of meromorphic multivalent functions involving certain linear operator. Tamsui Oxford J. of Math. Sci, 25(2): 167-176.
- [5] Najafzadeh, S. and A. Ebadian, 2013. Convex family of meromorphically multivalent functions on connected sets. Math, And Com. Mod, 57:301-305.
- [6] Raina, R. K. and Srivastava, 2006. Inclusion and neighborhoods properties of some analytic and multivalent functions. J. In-equal. Pure and Appl. Math, 7(1):1-6.
- [7] Rusheweyh, S., 1981. Neighborhoods of univalent functions. Proc. Amer. Math. Soc, 81:521-527.
- [8] Waggas, G.A. and Ruaa M. Abd, 2013. New class of univalent functions with negative coefficients defined by ruscheweyh derivative. Gen. Math. Notes, 18(2):77-91.