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ABSTRACT

In this paper, two efficient multiplier design schemes using squaring in reversible logic has been reported. Here
our objective is to reduce the quantum cost of the circuit at the cost of ancillary input and garbage output count.
To achieve the goal we have used an efficient squaring scheme which has a recursive structure and the design
provides significant reduction in quantum cost and also optimization of Ancillary input and garbage outputs.
Here two design schemes for squaring have been proposed and the comparison of the design parameters like
ancillary input and garbage output count etc. has been shown. Moreover, the quantum cost of the circuit has
been optimized using NCV-|1> and NCV-|v;> and double gate libraries. The most appreciable thing of the

design is that the architecture has a generic structure.
Keywords : Multiplier, Squarer, Recursion, Reversible Circuits
I. INTRODUCTION

Multiplier is one of the core components of the arithmetic and logic unit of different processors. Binary and
BCD multipliers have wide applications in DSP processors, image processing and artificial neural network [1-
4]. But the power consumption in designing VLSI circuits is a great matter of concern. There is always a trade
off between the propagation delay and power consumption in designing any digital circuit using MOS devices.
Using MOSFET scaling, the propagation delay can be reduced drastically but power consumption is increased
to a large extent. The researchers have been working on the techniques to reduce the power consumption for so
many years. Finally it has been found that reversible logic may be a good alternative to reduce power
consumption. Bennett [5] described the logical reversibility and showed mathematically that theoretically zero
power consumption occurs in reversible circuits.

Reversible implementation of multiplier circuits has already been performed and reported in [6-8]. In [9], a
multiplier technique has been reported using squaring. We are using that idea in this paper and show that this
technique is very useful in reversible logic because binary squaring algorithm offers the elimination of
redundant literals which in turn reduces the delay and power. The squaring technique, used here, has been

adopted from our previous work [10].
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Il. BASIC REVERSIBLE GATES AND CIRCUITS

Reversible gates are all (= xn) gates which have 1-to-1 mapping between input and output lines. The
characteristic matrix of any reversible gate must be a unitary matrix. The unitary matrix can be defined as a

matrix which inherits the following property, 4 = A~*, where, A” is the conjugate transpose of the matrix A.

Figs. 1(a) to 1(e) show some basic reversible gates used to design the reversible circuits which are as follows.

(i) NOT gate or inverter - 1 = 1 circuit (in Fig. 1(a)) having one input and one output line.

(if) CNOT (Controlled NOT) gate - 2 = 2 circuit (in Fig. 1(b) having two input and two output lines.

(iii) Toffoli gate - = = = circuit (in Fig. 1(c) 3 = 3 circuit) which performs the logical AND operation based on
the target input.

(iv) Peres gate - 3 = 3 circuit (in Fig. 1(d)) consisting of double gate structure used for arithmetic addition based
on the target line.

(v) Double Peres gate - 4 = 4 circuit (in Fig. 1(e)) consisting of double gate structure used for arithmetic

operation based on the target line.

In Fig. 2, the CNOT gate decomposition technique has been shown. CNOT gate can be decomposed into two

V or V' gates as shown in Fig. 2. The number of quantum operations needed is known to be the quantum cost of

a<b a a g a a a a a a a
td y b b b yl1 b b
t y t vz = vl
L y2
(a) (b) (c) (d) (e)
NOT Gate CNOT Gate 3 InputToffoli Gate Peres Gate Double Peres Gate

the gate.

Fig. 1 Basic Reversible gates
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CNOT Gate decomposition
Fig. 2 Decomposition of CNOT gate into V and V" gate

I11. PROPOSED MULTIPLIER ARCHITECTURE USING SQUARING TECHNIQUE
3.1 Mathematical Modelling of Multiplication using Squaring

Let us consider two binary numbers A and B whose multiplication is be determined. The product of A and B can

be expressed as,
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P— ip= :_j's _ ._4—.=..-:._4—.5, 1)

This scheme was developed by Chen [9]. We assume that {4 = E}. Then both (A+B) and (A-B) are positive
numbers. If both A and B are n bit numbers then (A+B) is (n+1) bit number and (A-B) is n bit number.
Therefore, (4 + B)* and (4 — B)? are respectively of 2(n+1) bits and 2n bits which are fed to the subtractor to
achieve the final result. It is obvious that the subtracted output is 2(n+1) bit number and its 0" and the 1% output

positions are occupied by 0. Therefore from the 2(n+1) bits result, the results of the 0" and the 1% bit positions

are to be neglected and the remaining 2n bits are the final result.

» (A+B)
Ay
W Squarer —:
Adder (AtB)
Subtractor Subtractor —> AB
Unit (A-B) 2
W Squarer —»
BE—»
»(A-B)

Fig.3 General architecture for reversible multiplier using squarer

The multiplier architecture is divided into three sub-modules:- (i) Adder, (ii) subtractor and (iii) Squarer as

shown in Fig. 3. The modules are described as follows. Here two different design schemes have been proposed.

3.2 Adder

3.2.1 First Technique (T,)

Fig. 4 shows the adder circuit for 4 bits using Peres gates. Here double Peres gates have been used as full adder.
In this architecture for n bit input, the number of ancillary inputs and the garbage outputs are (n+1) and 2n

respectively. The quantum cost is equal to 6n.
3.2.2 Second Technique (Ty)

Fig. 5 shows the adder circuit for 4 bit using the circuit shown by Cuccaro [11]. In this architecture for n bit
input, the number of ancillary inputs and the garbage outputs are 2 and (n+1) respectively. The quantum cost is

equal to (12n+1).
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3.3 Subtractor
3.3.1 First Technique (T,)

Fig. 6 shows the subtractor circuit for 4 bit using Peres gates. As discussed in the adder module, here also
double Peres gates have been used as full adder and NOT gates have been used for subtraction purpose. In this
architecture for n bit input, the number of ancillary inputs and the garbage outputs are (n+1) and 2n respectively.

The quantum cost is equal to 8n.
3.3.2 Second Technique (T,)

Fig. 7 shows the subtractor circuit for 4 bits using the reversible adder circuit shown by Cuccaro [11]. In this
architecture for n bit input, the number of ancillary inputs and the garbage outputs are 2 and (n+1) respectively.

The quantum cost is equal to (14n+1).

al Garbage
b0 % Garbage
] S Sum0
al :% Garbage
b1 Garbage
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b2 Garbage
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Fig. 4 Adder using Peres gate
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Fig. 5 Adder using the structure shown by Cuccaro [11]
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Fig. 6 Subtractor using the structure shown by Peres
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Fig. 7 Subtractor using the structure shown by Cuccaro [11]

For two n bit number multiplication, we first require addition and subtraction. After addition, (n+1) bits are
generated as outputs. Similarly, after subtraction, n bits are generated as outputs. The squaring of (n+1) bits
number produces 2(n+1) bits output. Similarly, the squaring of n bits number produces 2n bits outputs. Thus
finally we need a 2(n+1) bit subtractor. Therefore for (n+1) bit subtractor design using Peres gates, (2(n+1) +1)
ancillary inputs are required and 4(n+1) garbage outputs are generated. Total quantum cost is equal to 16(n+1).
If the addition technique described by Cuccaro [11] is used for subtraction, then humber of ancillary inputs

and garbage outputs are 2 and (2(n+1) +1) respectively. The quantum cost is (28(n+1)+1).

3.4 Squarer

Mathematical Modelling of squaring technique

The squaring technique has already been reported in [10]. The technique has been implemented using optimized
garbage outputs and ancillary inputs. The mathematical modelling and the architecture of the proposed squaring

technique is described below.

Let A, is an n bit binary number whose square is to be determined. 4., can be expressed as,
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A= it a2 = gy 2%t + T a2 = gy 27+ Ay @

Therefore, AZcan be expressed as,

Al = (o, 27N+ 4, 0F (3)
=g, 27N 42, A AL (4)
where, 4, s =@, 2"+, 22" 4o+ 0,27 + 0,20 40,20

= (ap_y +ap 18, _2)2" 7ty DIFa 2™ + 47, ®)

Lemma 1 [10]: For squaring of an n bit number, the result can’t exceed 2n bits

The second lemma has the similar interpretation as of the first lemma but it is applicable for addition
architecture.

Lemma 2 [10]: For an n bit addition the size of the output can’t exceed (n+1) bit

Suppose squaring of A is denoted as a 2n bit number (5%_:: 557 ST 2.0, 5755 50). Let A2, is known that

"

fo.. 5871501 58y are all known. Equation (5) can be rewritten as,

is (S8, .. 50t 5t

AR =lay g + 8qoq0n_7 127070 + Sum, (6)

where, Sum,, = Efa(a,_sa,_; + SE2T 4+ AL

From equation (6) we can now compute A2 from AZ_,. Obviously, 5 = 5/"~* for 0 = i = (n — 1}. Then to

compute A2, we have to perform arithmetic addition of two (n-1) bit numbers as shown in Fig. 8.

2n-1 2n-2 2n-3 5 2 . - . . n-1 n-2 n-3 . = 2 1 0
Ay Ay 2 A3 | - . a; a ay
LY Gz Ao | . . a, a, a,
QG G o0y | Qn 30y | - . Lo | 0,04 | G
%—1a1 aﬂ—zal aﬂ—zal ~ N a"al al alan
A, _,a> . : . a,ay
A, _ 0, . . . a;a,
: ~SQ-(N-1)"
A0y o] - . . . . . a0y
Ay Qo . . . . G4 | & ay
= P I -~ I S S 7 P 5.3 -2 B
_ 0| .| G Q| G G| G4 | G, 0
P P S I - : : Rl Rl

Fig. 8 n bit squaring using (n-1) bit squaring architecture

Consider the number (& _;. 0, _z. 84—z, ... 84.a5). Following the schematic of Fig. 8, suppose we have the

result of square of (n-1) lowest significant bits given by (5375, 5572, ... 55717, We can see that the square of n

- u

bit number can be obtained by adding two (n-1) bit numbers (a,_..5%%. .. 5% and

(G- 1By g0 B s By 3000 By 1 B, By G ). From the above mentioned two lemmas it is obvious that (n + 17"
stage of addition does not exist for (n-1) bit addition therefore only one carry from the preceding stage must be
propagated at the (n — 17" stage to generate the result at the »** position.

In every bit position a carry will be generated which will be added to next bit. Suppose these carries are

(Cy_s:CyuannCap_- 1 as shown in Fig. 9. It is obvious that £,,_: = C since there is no initial carry.
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Fig. 9 Schematic Diagram for addition of higher order n bit

Lemma 3 [10]: The output terms of n bit squaring 5}}__; for 1 = j = n can be expressed as,
Sh =S Ban ey By, for3 s =m,

=p_y B on_s8y_ B Cop_jyforj=2

=({_oforj=1

Lemma 4 [10]: For (2 =n = 4}, Cqy_7 = @y _y0y_q

Using Lemma 3, we can compute all the terms 57 for 0 = i = (2Zn — 1}. Lemma 4 suggests that for n = 4,

we have a reduced design and for n = 3, the design has a general structure.
3.4.1 First Technique (T:) for n = 4

Let us consider the squaring of a two bit number (a;. ay). The multiplication of this number by itself is shown in
Fig. 10. Obviously the 0™ bit of the squaring is 57 = a, 1% bit is 57 = 0, as a.a; & a.a; =0 and a.ay is

propagated to 2" bit position which produces 5 $=a, $a,a,. The carry generated will be propagated to the

next bit. The carry generated by @; and o, ay is simply a;ag, thus 55 = a.a

d 1=

ay iy
iy g
;g ay
ay aag
ﬂ.1 0 ﬂ.u
Qyag =
S-2 552 Sz So

Fig. 10 Structural Methodology for 2 bit squaring

This scheme can be implemented as in Fig. 11. This has been implemented using a circuit described in [13]. The
difference between the technique in [13] and our approach is that, in [13], the authors used a Peres gate to

execute 5z and 53, as shown in Fig. 11 where we did it in a simpler way (Fig. 12).

From the squaring of two bits number we like to achieve the design for squaring of three bits number. Let us see

the multiplication of the three bits number (z;. ;. a;). It is obvious that this squaring procedure contains a
portion of squaring of 2 bits (a;.a;) as shown in Fig. 12. Suppose the squaring of two bit number produces
(55.5:.57.5%). Obviously 5% = 55, 5f = 57,5 = 5:, 5% = 5:@a.a,. The carry generated by 55 and a,a; is
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nothing but performing logical AND operation on 5 and a;a;. The value of 5 and 5Z are derived from

Lemma 3. The implementation is shown in Fig. 13. The architecture of a four bit squarer using three bit squarer

is implemented in the similar manner as shown in Fig. 14.

al S0
al al
0 | s2 8'1] | | S0 a0 S0
al | - S2  al S2
0 83 ] SQ-2
0 51 8 ——S3 0 S3
{} 0 S1 0 S1
Peres Gate (a) Block Diagram (b) Circuit
Fig.11 The two bit squaring as in [13] Fig. 12 Schematic Diagram and the circuit for two bit squaring
al — -—S0 a0 —— — :2
al — g @ ——QI SQ2 [ T3
——S2 0 | S1
SQ-3
a2 — —S3 299 g S4
— 84
0 — ——S5 0B — Garbage
§ 0—& 4 S5
(a) Schematic Diagram (b) Circuit

Fig. 13 Schematic Diagram and the circuit for three bit squaring
3.4.2 First Technique (T:) for n = 3

Following the architectural description of Fig. 13 and Fig. 14, if we like to design the squarer for n bits using the
squarer for (n-1) bits then an adder of (n-1) bits is needed. From the architecture it seems that we need (n-2) full
adders and 1 half adder. But by derivation of Boolean algebra, we can show that (n-4) full adders and 4 half

adders and one CNOT gate are required. Suppose in the column of 57,_;, there are three elements to be added

(B—z:8y-18y-z aNd Cgp3).

The carry generated by @,_; and a,,_;a,_- is simply &, _.a,_; thus it can be simply passed to the next level
where it should have modulo-2 addition with @, _; & @, _:8,_2C25_2. Fig. 15 shows the general architecture

for n bit squarer using (n-1) bit squarer. The structure for n=5 is shown in Fig. 16.
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Fig. 14 Scheme for four bit squaring
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Fig. 15 Schematic Diagram for n bit squaring

The design consists of some full adders using double Peres gate. Fig. 17 shows the full adder design using

double Peres gate which has been used in Figs. 4 and 6 and its decomposition into elementary quantum gates.
The middle box of Fig. 17 (b) consists of V and V* gates which results in Identity gate of cost 0. Thus the full

Adder has quantum cost 6. The ancillary inputs, garbage outputs and quantum cost for the squarer using the (T 1)

have been calculated in [10].

al p——
al ———
a2 *»—
a3 . &

7 0s(A)

SQ-4

S0(al)

S1
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s3

54
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R 4 S6
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Garbage

Garbage

®—f S8

ad-}!—.—'—‘

0 &=

Garbage

Garbage

Garbage
1S9

[

I| Garbage
‘4@ Garbage

Fig. 16 Circuit for five bit squaring using four bit squaring architecture
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Fig. 17 Decomposition of single bit full adder using double Peres gate
3.4.3 Second Technique (73)

A full adder has an alternative design as depicted in Fig. 5 which has been described in [11]. Using the structure
of Fig. 5, we can also design a squarer in a recursive manner. The decomposition of the circuit has been shown

in Fig. 18. Following it, we need only 1 ancillary input. For n = 4, the circuit is same as in the first technique.

For n = 3, we provide the calculations in [10].

3.4.4 Multiplier Parameters Calculation

3.4.5.1 Ancillary Input Count

The overall design needs one adder, two subtractors and two squarers. Here the calculations are shown for two

different techniques described above.

3.4.5.2 First Technique (T,)

As described earlier, the adder for $n$ bit input takes (n+1) and 2n ancillary inputs and the garbage outputs
respectively. The quantum cost is equal to 6n. Similarly, the subtractor for n bit input, the number of ancillary

inputs and the garbage outputs are (n+1) and 2n respectively and the quantum cost is equal to 8n. The first

"2 for (n+ 1) = 4 and

squarer for (n+1) bit which is coming from the adder has the ancillary inputs

{n—13% —2 for (n + 1) = 4. The second squarer which has the output coming from the subtractor has the

ancillary inputs forn =4 and (n—1}° — 2 for n = 4. The last subtractor used in the design requires

(2(n+1) + 1) ancillary inputs. In the similar manner, for n=4 and n = 3, the ancillary inputs can be calculated.
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Fig. 18 Decomposition of single bit full adder described in [11]

So, forn< 3, A.1(n) =n® + 4n + 6. For n=4,4.1(n) = "% Forn>4, 4.1(n) = 2n% + 2n + 1.

In the similar manner, garbage output and quantum cost can be calculated.

B Eorn>4, G.0(n) = 2n® + 4n £ 1,

Forn<3,G.0m) =n’+6n +6.Forn=4,6.00n) =
Forn<3,4and>5,Q.C(n} =9n°+ 1571 + 2, 9n® + 24n + 19/and 10n° + 16n + 2 respectively.
3.4.5.3 Second Technique (T,)

For the second technique, the parameters can be calculated as follows.

Forn =3 A4.1(n) =n®* +2n+ 8. Forn=4, A.Iln) =n* +16. Forn>4, 4.1(n} = 2n® — 2n + 11.

Forn<3,6.0(n) =n®+4n +8 Forn=4,6.00n) = 2" Forn>4, 6. 0(n) = 2n® £ 3n + 1.

Forn<3,4and>5,3.C0n) =9n° 4+ 42n + 24.9n% + 300 + 21, and 10n° + 520 respectively.

IV. RESULT ANALYSIS

We have made the comparative study of our work with the similar work published in [8]. These comparative
results are tabulated here in Table 1. It establishes better performance of our techniques in terms of the several
circuit parameters. In the second approach, the ancillary inputs and the garbage outputs are reduced to a

considerably good amount with the tolerable increase in quantum cost.
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Bit length | Ancillary Input Garbage Output Quantum Cost

(n) 8 | T: Tz (8] LK T, (8] Ty T,

2 8 18 16 6 22 20 74 88 144
3 12 27 23 9 33 29 245 148 231
4 16 41 32 12 59 36 518 259 365
8 54 145 123 46 161 153 2437 770 1056
16 176 | 545 491 160 577 561 9696 2818 3392

Table 1: Calculation of performance parameters of the proposed multiplier architectures
V. CONCLUSION

We proposed two techniques of dedicated multiplication in reversible logic. The first technique offered less
quantum cost, the second one was better in terms of less ancillary inputs and garbage outputs. The comparison
of our methods with a similar work was also shown. The designs had a systematic approach with modular
structures and could be recursively built. It was observed that in both the techniques, quantum cost was reduced
in comparison to [8].
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