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ABSTRACT

In this paper we investigated the problem on dissipative analysis using sample data controller for a class of
singular networked cascade control systems (NCCS) with random time varying delays and external
disturbances. A new stochastic variable with a Bernoulli distribution has been introduced and the information
of probability distribution of the time-varying delay is measured and transformed into a new deterministic time-
varying delay. A new set of Lyapunov-Krasovskii functions are constructed to verify that the NCCS obeyed
regular, impulse-free, stable and strictly (Q, S, R) - dissipative. The derived LKF conditions are framed by
linear matrix inequalities (LMIs) and can be verified by using MATLAB LMI Toolbox. At the end a Numerical

simulations are given to express the efficiency of the derived results.

Index Terms: Singular Systems; Networked Cascade Control; Sampled-Data; Convex

Combination.
I. INTRODUCTION

Singular systems in other word descriptor systems have been studied by many researchers because of its
valuable applications in various fields like aerospace systems, electrical circuits, power systems and mechanical
systems and so on. In recent works number of standard state space are converted to singular systems. More
preciously, the singular systems are more complicated to compare with other standard type systems. On recent

days a large number of research article based on stability analysis are solved by many researchers.

In recent days number of improvements related to cascade control systems have been developed due its
importance in many fields. [1] Developed the concept of H-infinity state feedback control for a class of

networked cascade control systems with uncertain delay. [2] Investigated Cascade high gain predictors for a
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class of nonlinear systems and Performance assessment of cascade control systems. Cascade control of
superheated steam temperaturewith neuro-pid controller been developed by [3].

Robust dissipativity for delayed neural networks with random uncertainties has been modeled by [12]. Reliable
dissipative control of discrete-time singular systems with time delays studied by [13]. Dissipative analysis for
Markovian jump systems with time-varying delays, neural networks with time-varying delay and randomly
occurring uncertainties, sliding mode control of switched stochastic systems and discrete-Time T-S fuzzy
stochastic systems with time-varying delay been discussed by [14]-[16].

Motivated by the above consideration, this is the first attempt to consider the problem of dissipative analysis for
singular NCCSs with random time varying delay and external disturbances via sampled-data cascade control. By
implementing Wirtinger’s inequality, a new set of sufficient conditions are developed which ensure that the
resulting closed-loop system is admissible.

Notations: Throughout this paper, Superscripts”7” and “(-1)” stand for matrix transposition and matrix
inverserespectively. R" denotes the n-dimensional Euclidean space. Z, denotes the set of positive integers. R""
denotes the set of all nxn real matrices. P >0 (respectively P <0) means that P is positive definite (respectively,
negative definite). | and 0 represent identity matrix and zero matrix with compatible dimension.

1. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we first present the system model for the NCCSs with a singular plant. The considered system is
based on a class of singular plant with the data packets are transmitted via networks. The communication
network are considered with the network-induced delay and packet loss simultaneously and the controllers
depend on state vectors of the respective plants.

The cascade system under consideration have the primary plant given by the following equation:

{ 1 (t) = A1z () + Birya(t). D

w1 (t) = Cra (t) + Caw (i),
wherex, (t) and y;(t) are the state vector and output vector of the primary plant. A;, B;, C; and C; are known real

constant matrices with appropriate dimensions.

Further, a continuous-time system secondary plant is formulated using a class of linear time invariant

singularsystem with time-varying state delay and external disturbances, given by

Eio(t) = Aoswa(t) + Aswa(t — h(t)) + Boua(t) + Baw(t),
ya(t) = Coxa(t) + Crw(t), 2

zo(t) = o(t), te[—h,0],

where X (1) is the state vector; u2(L]} is the control input vector, Wit} € L,[0.%2) is the disturbance with

&

limited energy; V= (L} is the output of the secondary plant; matrix E may be singular and it is assumed that rank

T

=r=mn; the function @{f) is the initial condition defined on [—f 0]. The constant matrices
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A;,A;,B;, B3, C; and C, are the connection weights with appropriate dimensions. The time-varying delay in

(2) is assumed to satisfy 0<k(t)<k with h'(t) =p <1, h is a positive constant representing maximum time delay.

The state feedback controller in secondary plant is described as;

u2(t) = ug(t) + Kaxa(t), (3)

whereu,(t) is the control input of the primary plant.

It is noted that, in networked cascade control system the data packets are transmitted via network, so there is a
possibility of the control signals depend on the sampling communication and performing control operations
according to the sampling results. Especially, the sampled data control problem will be formulated through an

input delay approach. By considering this point, we consider the control input of primary plant of the form

ur(t) = Kexa(tk), tk <t <n+1,k=0,1,2,...,

whereK; is the gain matrix to be determined. The state variables of system are measured at time instants

ooy b te, <., that is, only x(t)are available for intervalt, < ¢ < #.1. The interval between any twosampling
instants is assumed to be bounded by z for any &> 0, t,.;—# = <t always hold, where 7 is the maximum upper
bound of the sampling interval. Usually, in existing literature, the input delay due to sampling is assumed as z(t)

= t—1, then the sampling interval can be written as t, = r— (¢—#) = t—(t).
[A1:] Let the time delay z(t) can be bounded by 0<z(t)<z, and its probability distribution is assumed as follows;
Suppose (t) takes values in [0 :z1] or (z1, 2] and prob{z(t) €]0 :71)}=dq or prob{z(t) &(z1:1:]}= 109 Where 7;, 7,

are integers satisfying 0<z(t)<r, and 0<dp<1. Further, in order to describe the probability distribution of the time

delay, define two sets as follows;
D= {l/‘[(t) E[O . ‘[1]} and D,= {I/T(t) E(‘[l: Tz]} . (4)

[A2:] Time varying delays z1(t) and z,(t) satisfying the condition

0 <t1(t) <r1, '1(t) = 1 and t1<02(t) <2, T'2(t) =1 (5)

Further it follows from D;uD,=z >0, D;ND,=¢, where ¢ is the empty set. It is easy to check that
te D;implies that event z(t) [0 : ;]occurs and t € D,implies that event z(t) &(z;: r,]occurs.

Define a Bernoulli random variable as;
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~ 1, + = I,
Sty — (6)
0, £ = Do,
Now to introduce time varying delays z;(t) and z,(t) such that
T(L),t € Dy 7(t),t € Do
Ti(t) = ;o m2(t) = (7)
0, elsewhere 1. elsewhere

Remark 2.1: Under the Assumption Il and above equation, it can be seen thatd(t)is a Bernoulli distributedwhite
sequence with P rob{5(t) = 1}=E[d(t)] =y and P rob{d(t) = 0}=E[J(t)] = 1—0y. Furthermore, we can show that
E[5(t)~d0] = 0 and E[(5(t)~60)°] =do(1~do).

Combining (1), (2), and (3), the closed-loop model of the singular networked cascade control system with time

Varying delay and external disturbance can be described as;

T (f) = Al;r-[(t) + Blcgi?g(t) + Bﬂi;w(t),
) E;ﬁg(t} = Ag;rg(t) + Agwg(ﬁ — h(f)) + 6(t)_82}(l$1(t — Tl(t)) + (1 — 5(t))BQKrli?1 (t — Tg(tjj ®)
+BaKoxa(t) + Baw(t),

y1(t) = Crz1(t) + Caw(t).

Definition 2.2: 1. The pair(E, Ay)is said to be regular ifdet(sE—4,)is not identically zero.2. The pair (E, A,) is
said to be impulse free if deg(det(sE—A4,)) =rank(E).

3. The unforced singular system is said to be regular and impulse free, if the pair (E, A,) is regular and impulse
free.

Definition 2.3: Given scalard >0, matricesQ,RandSwithQandRreal symmetric, system (8) is strictly

(Q,S,R) dissipative if fort> 0 under zero initial state, the following condition is satisfied:

<z, Qz>; + 2<2, Sw>y + <w, Rw>=> = O0<w, w>.

Without loss of generality, we assume that the matrix 0 <0 and Q= —Q.

Remark 2.4: From the above definition, it can be seen that the strict(Q,S,R)dissipativeness includesHiand
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passivity as special cases, which are stated as follows, 1. If @ = —I, § = 0 and R = ~2I, the (Q, S, R) dissipative

reduces to a Hy, performance constraint. 2. If @ =0, § = [ and R = 0, the (Q,8,R) dissipative reduces to
a passivily performance. 3. If R = 91721. #1 € [0,1] or Q = —7_1911,8 = (1—61)] and R = ~611, where
) € [0,1] be a given scalar weight representing a trade off between H, and passivity performance, then (Q,S,R)
dissipative reduces to the mixed H, and positive real performance.

Lemma 2.5: Given constant matrices =y, Z5 and =3 with appropriate dimensions, where =y = ET > 0 and

=T
=

3

[1]

1

=g = Eg > 0 then Zy + EgE;lEg < 0 il and only if < 0.

* —Eg
Lemma 2.6: For any constant matrix M > 0, any scalars a and b with a < b, and a vector function z(t), [a,b] —

R™ such that the integrals concerned are well defined, then the following holds

ubx(s)ds

Lemma 2.7: For any matrix R € R"*™_ R = RT > 0, any differentiable function w in [a,b] — R" the following

T

M[ / bm(s)ds] <(b—a) / b.rT(s)ﬂ'fx(s)ds.

inequalities holds:

b I~ [W’ 1T RW + TrQWéF RW'Q] S
/a W (s)Rw(s)ds = " a

where ¢ = [wT (b) W (a) [PwT(s)/(b—a)ds]T, Wi =[I -1 0],Wa=[1/21/2 —1.

Lemina 2.8 For any positive definite matrix #; and matrix W with appropriate dimensions, vector function £(t)

and x(t), scalars 7y and 79 satistying 7o > 7y such that the integrations concerned are well defined. we have
Ta Tz
— f @17 (s)Ry#1(s)ds < (rg — 7)) ()W Ry WTn(t) 4 2n(t)W / (s)ds.
T1 T

ITI. MAIN RESULTS

In this section, we investigate the dissipative sampled data control design for singular NCCS (1) and (2) with
time-varying differentiable delay. Further the sufficient conditions for admissibility of considered singular NCCS

is proved, which is a key result in studying the singular system.

Theorem 3.1: For given scalars € > 0, 7¢ > 0, 70 > 0 and the actuator fault matrix & is known, maltrices
Q=0T R =RT and S with the time-varying delay 71(¢) and m2(t) the system (8) is admissible and strictly
dissipative, if there exist symmetric positive definite matrices Sg_. i=1,2,3, Qg i=1,2, };’,i. i=1,2, I:i, A:L-.. N}-
and Hi, i =1,2,3,4 and real matrices Y7 and Y5 such that the following inequalities hold;

XTET =EX, > 0,

Xy E'= EXy >0,
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x Xg—2X, x Xg—2X4 x Xy —2X, * Xy —2X4
-[Q!,m]lelS O QO Q4-
x “Ry 0 0 0
where ¥ = * x =Ry 0 0
* * * =55 0
* * * x ]

Oup = A1Xy + Q) + 1Ry + (1 — )Ry + My, Qug = BiCoXy, Qu5 = Ly — My, Oy = Ny — Hy,
Qg =Ly + Hi, Qug = —Ni. Q15 = BiCy, Qgp = AgXy + BaYa + Sy + Sy + hiS3 + BT (X5 — 2X0)E +
T ET (X5 —2X0)B, Qg3 = A3Xo + LET (- X5+ 2X0)E4+ TET (X5 - 2X0) B, (o5 = BaY1d1. (o = BoYida.
Q11 = Z5ET(X5 — 2X0)E, Qa15 = Bs. Q33 = —(1 — p)S1 + 1ET(X5 — 2X5)E + TET(X5 — 2X)E,
Ogq = ET(X5 — 2X9)E + T ET (X5 — 2X9)E, Q10 = 25 ET (X5 — 2X2)B, (311 = 25E7 (X5 — 2X9)E,

Q4=4 = —Sg + %ET(XE, — QXQ}E -+ I—;ET(X}; - QXQ}E, 624:1[} = .E%QET(QXQ — Xs)E. 95,5 = I:g — M’g.

Qs,s = —ﬁ}Q, Qa,’r = _I:2 ‘|‘H21 Qs,s = ’\2 - Hs, QG.T = —153 + ﬁ}S- Qs,s = _NTQ- Q’?,? = —Ql -I-QQ - 134 + H4.

Ogs = —N3, Qss = —Q2 — Ny, Qg9 = —f%ﬁ. Qlo,lo = % + g—iET(Xs - 2XH)E, Qi = —% +
g—jET(Xs —2X0)E, Qia12 = *}f—f. Q313 = *f‘—f. Qua1q = *Tﬁzﬁ, D515 = —C1Q — (38 — R + 41,

. T | T
leﬁ[mxf BiChXT 019 3104] A= —T7 [Alx{ BiCoXT 049, B1C.‘4] :
T

R ) ) 4T
O3=VE|0 AX] 4 BaYy AsX] 0y GBY BB O Byl (0= |00X] 0y, QG| More-
over, the gain matrices of the feedback controller (3) is given by Ky = Y]Xl_l and Ky = Y;]XQ_].

Proof: To prove the NCCS system (8) is admissible, first we need to prove that the system (8) is regular and

impulse free. It follows from (3.1)

[ho Tog Ty
¥ T33 Tan| <0, 9)

* #  T'n

where I'g9 = %ET(XE. —2Xo)E + I—;ET(Xs —2Xp)E, I'y3 = %ET(_XS +2X5)E + E_EET(XE -2k,
]_—"2,11 _ %ET(XS _ QXQJE 1—-3,3 — %ET(XE, _ QXQ}E + %ET(XS — QXQ)E FB,]I = %ET(XS - QXQJE
Tia = —5 + B (X5~ 2X0) .
I 0 A R

LetV = . pre and post multiplying (9) by V and VT, respectively, we get & = , Where
01 Ag * (1)3

o = FQ,Q-I—A%"F{“+T2,11A2+8y'm(f1%"1ﬂf1__11442). Py = F2,3—|—T2,11A3+A§TT1,11A3, G3 =T33+T31142+

TrT
A; F11._11A3-
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Now, the matrix R can be parameterized as R = GT ,where ¢ € RX(=7) s any non-singular matrix.
1
A Ap| Py Pp| _ Fiy
,P=GTTPG™! = JF=HTF=

Similar to (10), we define A = GAH = .
Az Ay P13 Py Fig

Pre and post multiplying both sides of & < 0 by H* and H, we have = | :
by AT F + FioeT Ay

Then, from (8), it is easy to see that Aﬂ',oTFE -|-F1g',oTA14 < 0. Suppose that A4 is singular, there must exist a
non-zero vector p € R"™", which ensures that A14p = 0.

Therefore, we can conclude that pT(AﬂwTFE +F12;9TA14),0 = 0. Hence Ay4 is non-singular. Then, it it is easy to
check det(sE — Ay) = det(sE — Ay) which implies that det(sE — Ay) is not identically zero and det(sE — Aj) =
r = rank(E). Thus, the pair (E, Ay) is regular and impulse free.

Now. we need to prove the singular NCCS (8) is stable when w(t) = 0. Let us define the Lyapunov-Krasovskii

function for the system (8);

where

Vi(a(t)) = o1 (t) Pra () + o3 (1) E" Poaaft)

Va(a(t) = /E o1 (5)Qua (s)ds + /t o (5) 0y (s)ds,
0 t -1 pt
Va(z(t)) :/_T [+9${(S]R1$1(5]d8d8+/_7 /H.g a:lT(s)Rgxl(s)dsdH,
0 t -7 gt
Vi(z(t)) = /_ T wfc{(s)Rga';l(s)dsdaJr 3 /Hga‘;{(s)ﬁm(s)dsde,
Vs(x(t) = /E i 20 (5)S1a(s)ds + /z . 21 () Saia(s)ds,
0 pt 0 pt
Ve(z(t)) :]—h ngc{(s)Sgwg(s)dsd@—l—f_h Lrgcbg(s)ETS[,Ezbg(s)dsdﬁ,
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Calculating the derivatives V{z(t)) along the trajectories of the system (8). we have

Vl (m(t)} = 2mf[t}P1 [Alxl(t) + Bngscg(t)] + Qaig(t)Pg [Agmg(t} + Agﬁ?g(t — h(t))

—I—(S(f-)BgKlml(t — Tl(l)) + (1 — é(t))BgKlzcl(t — Tg(t)) + BZKQ:I:Q(t)],
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(12)

(13)

(14)

(15)

Va(a(t)) = o (H)Qua1(t) — af (t = 71)Quaa(t — 1) + 2 (t — 1) Qa1 (£ — 71)
—of (t = 72)Qaz1(t —72)
Va(a(t) = miaf (t) Riza (t) - ft ;l 21 (s)Riwi(s)ds + (r2 = ma)a] (t) Row1 (¢)
_ ft i_ 2T (s) Row (5)ds,
Vie(t) = mia] () Rair(t) - /t ; i (s)Ra1(s)ds + (ry — )i (t) a1 (1)
S LT
Vs(2(t)) = 3 (t)Siea(t) — (1 — p)ag (¢ — h(t))Sraa(t — h(t)) + 23 (t)Spza(t) — 23 (t — h)Saea(t — h)(16)

Vg(m(t)} = h&,“g(t)ngcg(f) - /ih xg(s)33$2(s}ds + hig(t)ETS4Eﬁg(t) — /ih

i3 (s)ET S4By (s)ds (17)

By applying Jenson inequality Lemma 2.6 for the integral terms in (14), (17) and the time delay interval, the

integrations in the above equations can be written as

t—T1(t) t

t
—/ z{(s)Rwl(s)ds = —/ mT(s)lec](s)ds—/ ()x{(S)Rwl(s)ds
I—Tl i—Tl t—Tl i
t—71(t) 1 -1 (L) T t—71(t)
—/ z{(s)lel(s)ds <— E {/ ri(s)ds| Ri [[ wl(s)ds] (18)
t—Tl t—'T] t—Tl
t 1 t T t
_/ z{(s)Rwl(s)ds <-— {] z1(s)ds| Ry / aq(s)ds] (19)
t—y(t) T LJt—m(t) t—1(t)
t—7, t—Ta(t) t—7
—/ x{(s)Rgml(s)ds = —/ CBT(S)RQSL‘](S)CIS—/ x{(s)ngl(s)ds
I—To t—Ts t—Ta(t)
t—Ta(t) 1 t—Ta(t) T t—To(t)
—/ z{(s)Rgxl(s)ds <— [/ a:ﬂs)ds] Ry {f 331(5)033} (20)
t—Ta TQ - Tl t—T72 t—To
t—1, 1 t—7, T t—7,
—/ zi (s)Razy(s)ds < — [/ :cl(s)ds} Ry [/ zl(s)ds] (21)
i—Ta(t) T2 =T1 LJt-n(t) t—72(2)
t t—h(t) t
—/ al (5)Ssao(s)ds = —] zg(s)ngcg(s)ds—/ 21 (5)Sawy(s)ds
t—h t—h t—h(t)
t—h(t) 1 t—h(t) T t—h(t)
_/ x5 (s)Sgag(s)ds < — — [/ xg(s)ds} Sq [/ mg(s)ds] (22)
t—h h t—h t—h
t 1 t T t
—/ a:g(s)Sgwg(s)ds <—— [/ zg(s)ds] S {j xg(s)ds} (23)
t—h(t) h t—h(t) t—h(t)
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By applying Wirtinger-based inequality lemma 2.7 for the integral term in (17), we can get the following inequalities;

t t—h(t) t
- f il (s)ET SyFig(s)ds = — / #1 (s)ET Sy Fiy(s)ds — / #1 (5)ET S4Eiy(s)ds
t—h t I_h(t)

—h
- T
z2(t — h{t)) z2(t — h{t))
t—h(t) _1
- / ) il (s)ET SyFig(s)ds < — za(t — h) w za(t — h) 1 (24)
o _
O ay(s)ds| 5 LSO aa(s)ds
- T
t (t) za(t)
. . -1 .
- / ();r:QT(s)ETS4E:sg(s)ds < | mlt=h) | W a(t— () (25)
t—h(t '
t t
_% ft—h(t} z(s)ds %ft—h(t} z2(s)ds
E'S;E —ETS,E 0 TETS,E TETSE T ETS,E
where W= |« ETSiE 0| + +  TETSE -TETSE|.
* * 0 * * ngT&;E

By using Lemma 2.8, for any arbitrary matrices L, M, N and H. with compatible dimensions, the following

inequalities hold;

t t—7 (t) t
- / i1 (5)Radq(s)ds = — f T (s) Ry (s)ds — / &1 (5)Rai1 (s)ds (26)
t—1 t—7 t—71(t)
t—71(t)
—/ if(s)ﬁgzﬁ(s)ds < (Tl—Tl(t))nT(t)LRglLTn(t}+2n(t)L($1(t—Tl[t)}—ml(t—ﬁ)) (27)
t—11
1t
- / ()i}"(s)ﬁgrl(s)ds < 7y (tnF () MR My (t) + 20(t) M (24 () — 21 (t — 74(1))) (28)
t—71(t
t—T1 t—T2(t) t—71
- / #] (5)Ryy(s)ds = — f &1 (5) Ry (s)ds — / #1 (5) Ryt (5)ds (29)
t—Ta t—T2 t_TZ(t)

[

t—72(t)
—/t &1 (5)Rydy (5)ds (g — ()T ()N R NTn(t) + 20(t)N (21 (t — 1a(t)) — 21(t — 7)) (30)

—Ta

_[ETI &1 (5)Rag1(s)ds < (mo(t) — )" (VHR{ H n(t) + () H(z1(t — 1) — 21t — ma(t))) 31)

~7a(t)
where L = [L{ Oay, Lg L%n LI Ugn]T,ﬂff = [M'lT Oay, M'QT M g M’I Dgn]T, N = [NIT 04 Ng Ngn NI O'm]T
and H = [HT 030 HY HI HY 0saf7 and nt) = [o7(8) a3(6) 2§ (t—h(t) a5 (t—h) ol (=ma(t)) o] (¢

n(t) ] (t—r1) 2] (t—-m) [ 2T (s)ds :__;(t)zg(s)ds f:_h(t)azg(s)ds t_ﬁ(t)x{(s)ds j;t_rl(t):c{(s)ds

t—T2(t) t—11
-7 T
f_:z (t) :c]l" (s}ds} .

Combaining and applying Schur complement lemma we get
Viz(t) < o (t)on(t) (32)
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where ¢ = © + (1 — 71 (t)) LRy LT + 1y (t) MRy " MT + (ry — m(t))NRy ' N7 + (my(t) — 7)) HRy ' H” with

Qmliaxia D QO
£ —By 0 0
e =
* + =Ry 0
* * ¥ =9

where

D1 = PA L+ Q1+ 1R+ (1o — m)Re 4+ My, Q49 = PiBiCy, Q5 = Ly — My, 46 = Ny — Hy,
Oy = Ly + Hy. Q18 = =Ny, Qgp = PyAy + PoByKy + Sy + Sy + S5 — LETSE — TETS,E, Qyg =
PyAs + LETS,E — TETS,E, Qo5 = PaBoK1d1, Qg = PaBaKido, Qo1 = JzETS4E, Q35 = —(1 -
w)S1 — LETS4E + TETS,E, Q34 = LETS4E — TETS,E, Q310 = ZETSIE, Qa1 = Z-ETS4E, Qs =
—Sy — LETSiE — TETSE, Qo = $2ETSiE, Q55 = Ly — My, Q56 = —Ha, Q57 = —Lo + Ha,
Q6= No— Hs, Qg7 =—La+ H3, Qgg = —No, Qy7 = Q1+ Qo — Ly + Hy, Q78 = —N3, {lgg = —Qy — Ny.

_ R _ s 2 o7 _ 8, mpT _ R _ R
Qoo = —72- Qogo = —F + B S4E, Q= —F + HE S4E, Qgpe = =74 gaz = -7

T2—T1 1

T T
Qa4 = —Tfﬁ, M = 1 |RYA; RIBCy 012n] , = -7 [R{Al RTBICy 09| - 23 =

Vh|STAy+ STByKy STAs 0o, STBoK16) STBaK 6 Ogn] :
Then, by applying the idea of convex combination, for the interval 0 < 7y(t) < 7 and 71 < 79(t) < 79, the term

U in (32) can be changed equivalently into the form

U, = ©+4+nLR;'LT (33)
Uy = O+nMR;IMT (34)
U3 = O+ (r—m)NR'NT (35)
Uy = O+ (n—m)HR'HT (36)

By using Schur complement lemma and in view of (3.1), (3.1), (3.1) and (3.1) we conclude that the system (8) is

asymptotically stable.

Next, we study about the dissipativity of system (8) with nonzero w(t) and given disturbance atlenuation level

¢ > 0. for this we introduce the following relation:

Ji

—(z,Qz)¢ — 2(z,

/0 [—z(s}T Qz(s) — 227 (s)Sw(s) — w” (s)Rw(s) + wT(s)ﬁw(s)] ds.

Swt — (w, Rwt + 0{w, w)y

(37)
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In simple terms, we write

[V(@(0) + fy (= 2(s)" Qa(s) = 22" (5)Sw(s) — " (s)Rew(s) +w" (s)6w(s))ds| < f ()¥mi(t),  (38)

where my(t) = [z](t) 23 (t) = (t - h(t)) %T(t—h} @i (t = i(t)) 93]f(t—fz(t)) zi(t—m) af(t—

m) [Shgals)ds [ 50 af(s)ds [y ol ()ds [Tal(s)ds [, aT(s)ds [T T (s)ds T (1]
with
-[Ql,'m]lelS QO D MO Q4-
* Ry 0 0 0
=1 © -R, 0 0.
* * x =84 0
I

where Q11 = PiA; + Q1 + 1Ry + (12 — 7)Ry + My, Q2 = PiBiCy. Qi5 = My, Qi = Ny — Hy,
Oy =—Li+Hy. Qg = —Ny. Q15 = PLB1Cy. Qo9 = PyAg+ PyByKy+51+S9+hS3— + ETS,E ~ gET&;E.
O3 = PyAs+ L ETS,E ~ TETSIE, Qg5 = PyBoK101, Qo5 = PyBaK 189, Q.11 = 2 BT S4E, Qo 15 = PyBs,
(33 = —(1 — p)S1 — LETS4E + TETS4E, Q34 = LETSIE — TETSIE, Q10 = 2-ETSIE, Qayy =
I ETSiE, Q4 = ~So — 1ETSE — ZETS,E, Qu10 = ZETS4E. Q55 = Ly — Mo, Qs6 = —Hs,
Qs7=—Lo+ Hy. Qg6 =No— H3, Q67 =—L3+ H3, Qg8 = —No, Q77 = Q1+ Q2 — Ly + Hy, Q78 = — N3,
OQgg = —Qa — Ny, Qg9 = 2 - —E SiE. Qg =2~ —E S4E, Qig1a = -7 g3 =

T
By = R Q15._15 = —C1Q —C3§—R+0I, O = \/ﬁ[RgAl RYBiCy 0y R3 BiCy
T

=V T [R{Al HIB]CQ 0195, RIBlCA,
T
ﬂazx/ﬁ[on STAy+ ST BoKy STA3 0, STByK16 SIBoKidy Osy S{Bg} ;
T
Oy = {QCI 013 QCS} Further the equations (33), (34), (35) and (36) reduces (o

U /1l U M U /7N U J/m_nH

1

* —Hg . * —Rg * —R4 * —R4
To complete the proof, pre and post-multiplying (I1T), (II1).(IIT) and (I1T) by diag{ Xy, X2, Xo, X2, X1, X1, X1, X1, X1,

Xo, Xo, X1, X1, X1,1, X3, X4, X5,1, X1} and by letting XJET = EXy, X1 = P, Xo = Py', X3 = Ry,
Xi=R{\ X5 =571 8 = X085 X0. i = 1,2,3. Qi = X1QiX1.i = 1.2, By = X1 R X1.i = 1,2, L; = X1 Li X1,
i=1,2,3,4 My = XiM;X1,i=1,23.4 N; = XyNiX1. i =1,2,3,4, H; = X1 H; X1, i =1,2,3,4.

By considering (37) and (38), we can find that the LMIs (I1I), (IIT),(IIT) and (IIT) are equivalent to the LMIs (3.1),
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Jp < [ﬁ [fz(s}TQz(s) — QZT(S)Sw(s} — wT(s)(R + 01 )w(s)]ds + V(m(t}) <0
for any non-zero w(t) € Ls[0. c0). This implies
[/ (Z(S)TQz(s} + QZT(S)Sw(s) + wT(s)w(s))d-s] > 6'/ w(s)Tw(sjds. (39)
0 0

Thus, we conclude the system (8) is strictly (Q,S.R) dissipative according to Definition 2.3. Hence the proof is

completed.

IV. NUMERICAL SIMULATION

In this section, we provide a simulation example to illustrate the effectiveness and applicability of the proposed
method. The example is constructed by a heating furnace model (power plant boiler-turbine system), which can be
described by a singular networked cascade control system with time varying delay and external disturbance.

Here we consider the heating furnace of power transmission system, it is an important part of the steam generation
process. In this process there are two sensors associated with the furnace, the primary one (ransforms the information
of the primary plant and the secondary one transforms the information of the secondary plant. The information of
the primary and/or secondary plant include the temperature, disturbance and so on of the furnace. The secondary
controller can control the valve of the furnace, thus the quantity of the fuel material can be modulated. The
disturbance is mainly in the inner loop which can be controlled rapidly. So, the cascade control is an effective one
for the temperature control of the heated material.

Let the state-space representation of the primary plant is described by

‘ -1 0 0.2
z1(t) = r1(t) + y(t),
-1 =2 0.1 (40)

u(t)= [0 0.1] z1(t) +0.2w(t).
The state-space representation of the secondary plant is described by

. 1.3 1 0.2 0.1 0.2 —04
Eis(t) = z9(t) + z9(t — h(t)) + us(t) + w(t),
02 0 02 1 1 0.1 (41)

x9(t) + 0.1w(t).

yalt) = [—0.3 0.1

The state feedback control for the singular NCCS with state delay and disturbance will be designed using Theorem

3.1
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Dissipative case: If we set the state time delay bound 7y = 0.1 and assuming h =121, Q =-1, R=0.1, S=

—0.01 and g = 0.2 by solving the LMIs given in Theorem 3.1 using the Matlab LMI toolbox, we can obtain that

the upper bound on the samplings 7o = 1.12. In this case, the corresponding gain matrices can be obtained as

K1 =1]-0.0312 0.2764}3 KQZ[—13.4245 —6.1215] .

H, case: If we set the state time delay bound 7y = 0.1 and assuming h = 1.21, @ = -1, R = 721, S =0 and
p = 0.2 by solving the LMIs given in Theorem 3.1 using the Matlab LMI toolbox, we can obtain that the upper

bound on the samplings 79 = 1.15. In this case, the corresponding gain matrices can be obtained as
Ki=1-0.012 0.0481] , Ko= {—14.3918 —6.6387| -

Passivity based control design: If we set the state time delay bound 7y = 0.1 and assuming h = 1.21, @ =0, R =
0, S=1and p = 0.2 by solving the LMIs given in Theorem 3.1 using the Matlab LMI toolbox, we can obtain

that the upper bound on the samplings 7 = 1.1. In this case, the corresponding gain matrices can be obtained as
Ky =10"*|0.3726 [}.5178]- Ky = [—17.6868 —8.4108] .

When the we consider delay bound is differentiable, the desired systems can be obtained by Theorem 3.1.

Moreover, to reflect the effectiveness of the developed design scheme simulation results are presented in Figs

1-8. For this, it is assumed the disturbance signal

0.05 +exp(0.5¢), 0.005 <t <3,

w(t) =
0, Otherwise.

1 6

i .

\ |

IS )

|| 1

]

o o
G g -2t/
2| g |

-4

i |

—3[ -5

-8

-4

r -10

- . ‘ . ‘ o . ‘ ‘ .
0 20 40 60 &0 100 0 20 40 60 B0 100

Time 't Time 't

Fig. 1: The state responses for dissipative case primary and secondary plant

Simulation results for state responses of singular NCCSs (8) for dissipative performance, H. performance,
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Fig. 2: The response for dissipative case primary and secondary control signal u(t).
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Fig. 3: The response for dissipative case output signal.

Passive cases are shown in Figs 1, 7 and 4, respectively. Further, the corresponding controller performance
areshown in Figs 2, 5 and 8, respectively. From the simulation results, it is easy to see that the obtained
controllerdesigns are suitable to make sure the state trajectories are converging well. Also, it is noticed that the

optimized minimum gamma obtained through the results shows that the LMI based conditions in Theorems are

worked wellover the network imperfections and external disturbance.
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Fig. 4: The state responses for H,. case primary and secondary plant
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Fig. 5: The response for H,, case primary and secondary plant control signal u(t).
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Fig. 6: The response for H., case output signal.
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Fig. 7: The state responses for passive case primary and secondary plant
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Fig. 8: The response for passive case primary and secondary plant control signal w(i).
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Fig. 9: The response for passive case oulpul signal.

V. CONCLUSION

The problems of stability and dissipative analysis of NCCS have been investigated. In this paper for a time
varying random delay technique, some novel LyapunovKrasovskii functional candidates were introduced for
admissibility and dissipative of NCCS. The derived results are tabulated. At the end, a numerical example were

given to demonstrate the modeling and guarantee the effectiveness of the developed approaches.
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