

222 | P a g e

IDETIFIER ANALYSIS THROUGH CODE

INSPECTION

Sujata S. Deshmukh
1
, S.Pratap Singh

2

1,2
Computer Engineering Dept., SP’s Institute Of Knowledge , College of Engineering

Pimple Jagtap, Pune. Maharashtra (India)

ABSTRACT

Software quality is not defined in terms of quality attributes but instead must be inferred from characteristics

that correlate to quality attributes and defect attributes. Readability of source code in one such attribute.

Software characteristics have been identified by empirical research, which correlate well to source code. One of

such software characteristic is choice of identifier name. Identifier names are key mechanisms by which readers

of source code such as maintenance programmers access and understands source code. There exists a

relationship between flawed identifier names and software maintenance cost. Studying such a relationship is

useful to assess whether naming conventions have impact on maintenance effort and to gain a deeper and finer -

grained understanding of which program comprehension issues lead to code quality problems. We present in

this paper the identifier analysis method that can identify flaws in Java identifier names.

Keywords: component; formatting; style; styling; insert (key words)

I. INTRODUCTION

Modern programming languages permit the creation of clear, readable and meaningful identifiers. Programming

conventions provide guidance on the typographical form of identifier names associated with particular language

constructs and the parts of speech to be used in different types of identifiers. However, only limited advice is

given on matters such as the length of identifiers. The poor identifier names are barriers to source code

comprehension are sufficient reason to create good quality identifiers. However, there might be other

consequences of poor quality identifier names such as poor understanding of code during maintenance and

increased cost of maintenance. Given the importance of the natural language content and structure of identif ier

names to the readability of source code one can find relationship that exists between software quality and the

quality of identifiers names used in the source code. [1]

Identifier name quality is multifactorial. The use of typography, as defined in programming conventions gives

the reader clues to the role of each identifier. However, typography alone is insufficient. The good identifier

name should clearly communicate the concept represented and its function through the use of natural language.

Identifier names are crucial components of source code which have impact on program comprehension. As

artifacts of the programmers thought processes, identifier names are mechanism by which source code may be

223 | P a g e

accessed and understood. Similarly, they may reflect difficu lties the programmer had understanding a problem

and thus of potential defects in the fin ished software.

Although there is work relating identifier naming and program comprehension, work has not been done that

directly relates identifier naming and code quality. Studying such a relationship is useful help to assess whether

naming conventions have impact on maintenance effort and to gain a deeper and fine -grained understanding of

which program comprehension issues lead to code quality problems.[2][4]

As Eclipse is widely used platform for Java development, we have used Eclipse Java Development Tool (JDT),

Eclipse Java

Model and Eclipse Abstract Syntax Tree API (AST API) to develop the identifier analysis module that can be

used as plugin for Eclipse.

II. LITERATURE SERVEY

A. IMPORTANCE OF CODING CONVENTIONS IN SOFTWARE MAINTENANCE AND TESTING

Coding standards have become increasingly popular as a means to ensure software quality throughout the

development process. They typically ensure a common style of programming which increases maintainability

and prevent the use of potentially problematic constructs, thereby increasing reliability. The ru les in such

standards are usually based on expert opinion gained by years of experience with a certain language in various

contexts. Over the years various tools have become availab le that automate the checking of rules in a standard

helping developers in locating potentially d ifficu lt or problemat ic areas in the code. These also include

commercial offerings. Such tools generally come with their own sets of rules against which they check for

violations of coding standards. However, in spite of the availability of appropriate standards and tools, there are

several issues hindering adoption. In spite of the widespread use of coding standards and tools enforcing their

rules, there is litt le empirical evidence supporting the intuition that they prevent the introduction of faults in

software. [2][10][14][16]

Naming conventions make programs more understandable by making them easier to read. They can also give

informat ion about the function of the identifier-fo r example, whether it is a constant, package or class which can

be helpful in understanding the code. Code conventions are important to programmers for a number of reasons

[5][6]:

1) 80 percent of the lifetime cost of a piece of software goes to maintenance.

2) Hard ly any software is maintained for its whole life by the original author.

3) Code conventions improve the readability of the soft- ware allowing engineers to understand new code more

quickly and thoroughly.

4) If developer ship source code as a product, developer need to make sure it is as well packaged and clean as

any other product.

B. ROLE OF INTERMEDIATE PROGRAM REPRESENTATION IN SOFTWARE MAINTENANCE

A fundamental goal of software engineering is to make program development and maintenance easier, faster and

less error prone. This includes addressing problems like:

224 | P a g e

1) Understanding what an existing program does and how it works.

2) Understanding the differences between several versions of a program.

3) Understanding whether design rules have been followed in coding phase.

Tools that assist programmers with such problems are most useful if they are language based that is, if they

incorporate knowledge about the programming language in use. On the other hand, it is desirable to base these

tools on language independent algorithms and data structures so as to avoid the need to re -design and redevelop

a set of tools for every different programming language. One of such intermediate representation which is

widely used in software maintenance is Abstract Syntax Tree (AST). Abstract syntax trees (ASTs) [7] are

known from compiler construction where they build the intermediate data format which is passed from the

analytic front-end to the synthetic back-end. In software development, ASTs are used as a model of the source

code. They represent a program on the level of the abstract syntax that means that they are independent from the

concrete syntax for identifiers, operators, conditions or statements of the underlying programming language.

The striking advantage in the use of ASTs in contrast to source programs is the higher level of abstraction.

Hence, the algorithms have to be developed only once and can then be used for programs written in various

different languages. The Abstract Syntax Tree is the base framework for many powerful tools of the Eclipse

IDE including re-factoring, quick fix and quick assist. The Abstract Syntax Tree maps plain Java source code in

a tree form. This tree is more convenient and reliable to analyze and modify programmatically than text-based

source. [7][14]

III. ACHIEVING CODE QUALITY THROUGH IDENTIFIER NAMES

The development of software, like any other manufacturing processes can introduce defects in the resultant

product.

However, unlike other manufacturing processes, software is manufactured extensively once and then modified

until sufficient defects have been removed such that the customer will accept the product. The customer may

only be concerned with capability and will have no further interest in the internal software structure. However,

some customers are becoming increasingly interested in the internal structure of software delivered to them as

this has a flow-on effect to the cost of maintain ing the product (i.e., the cost of modifying and adding new

capability which is distinct from the activity of software bug fixes). Customers may hence contractually impose

software quality standards on their contractors. These standards are interpreted by the contractor and typically

further standards are derived such as the project coding standards . [2][8][9]

However, the software engineer suffers from various cognitive limitations that make the production of readable

software a difficu lt task. In addition, the software engineer is not prepared well by their education to address

quality in their software development practices. Often, they are given very general instruction regarding what

constitutes software quality and rarely they are instructed in how to achieve the quality produc tion of software.

Their education is heavily waited towards discussing the production phase of the software life cycle with the

maintenance phase given a rudimentary treatment. Similarly, their peer culture and the culture of their

management places little emphasis on future maintenance of the software during the development phase. There

are no industry wide adoptions of software quality tools that actively assist the software engineer to produce a

quality product. [9][15]

225 | P a g e

A software quality characteristic that has the potential to improve software quality is the choice of identifier

name and this is particularly so in large software systems. Identifier naming style guidelines supported by

empirical ev idence and generally accepted by software professionals to direct towards improved source code

readability are candidates for automation by a static analysis tool. Such an automated tool could make visible

aspects of software quality that are less keenly perceived by the novice programmer and could assist in their

education along the path to expert status. Hence is the motivation to develop a plugin that can do identifier

analysis in Eclipse IDE[19] which is widely used platform for Java development.[1][8][10]

Table I shows identifier naming style guidelines in general to achieve code quality through identifier

names. [2]

TABLE I

IDENTIFIER NAMING STYLE GUIDELINES

Name Description Examples of flawed

identifiers

Capitalisation

Anomaly

Identifiers should be

appropriately

capitalised

HTMLEditorKit,

pagecounter, fooBAR

Excessive Words Identifier names

should be composed of

no more than four

words or

abbreviations.

HTMLEditorKit,

pagecouoatToRawInt-Bits()

External

Underscores

Identifiers should not

have either leading or

trailing underscores.

foo

Long Identifier

Name

Identifier names of

more than twenty

above Characters

should be avoided

where possible.

getPolicyQualiersRejected

Naming

Convention

Anomaly

Identifiers should not

consist of non-standard

mixes of upper and

lower case characters.

FOO_ bar

Non-Dictionary

Words

Identifier names

should be composed of

words found in the

dictionary and

abbreviations and

acronyms that are

more commonly used

than the unabbreviated

form.

strlen

Number of Words Identifiers should be

composed of between

ArrayOutOfBoundsExceptio

n,

226 | P a g e

IV. IMPLEMENTATION DETAILS

Today’s large, complex software systems require automatic software analysis and recommendation systems to

help the software engineer in completing maintenance tasks effectively and efficiently. The software maintainer

must gain at least partial understanding of the concepts represented by existing source code before making

modifications. A programmer codes the concepts and actions in terms of program structure and helps to convey

the intent and application domain concepts to human readers through identifier names and comments. Thus,

many of the program search, concern location, code reuse and quality assessment tools for software engineers

are based on analyzing the words that programmers use in comments and identifiers. Hence identifier analysis in

source code becomes important.

In previous section, it has been seen that there exis t a relat ion between identifier naming conventions and quality

of software developed as well as readability and understanding of the same during maintenance. There is a need

of tool that can find identifiers automatically in Java source code and validate them against identifier naming

conventions of Java. As Eclipse is widely used platform for Java development, we have developed a module that

can do identifier analysis automatically of entire Java project in Eclipse workspace. By extending the Eclipse

functionality with the addition of identifier analysis plugin developers can get identifier analysis of all Java

projects in workspace in just single click of mouse. With identifier analysis it doesn’t only mean finding the

identifiers and validate them against naming conventions but also there is need to find other fields related to

identifiers which contribute to readability of code being analyzed during its maintenance.

For each identifier found there is need to find following fields. 1) Type of identifier

It can be of type class, method, variable, interface or constants.

2) Simple or compound word

This field find out whether identifier found is single word identifier i.e . simple or it is combination of multiple

words i.e. compound word.

two and four words. name

Numeric Identifier

Name

Identifiers should not

be composed entirely

of numeric words and

numbers.

FORTY TWO

Short Identifier

Name

Identifiers should not

consist of fewer than

eight characters, with

the exception of

c, d, e, g, i, in, inOut, j,

k,

m, n, o, out, t , x, y, z

name

Type Encoding Type information

should not be encoded

in identifier names

using Hungarian

notation or similar

iCount

227 | P a g e

3) Dictionary word or non dictionary word

This field find out whether name used for identifier is belonging to English dictionary or not. This field has

impact on readability of code during maintenance of the same.

4) Grammat ical sense of identifier

In this field if identifier found is dictionary word then there is need to find grammatical sense of the same i.e.

noun, verb. According to Java coding conventions class identifiers should be nouns and method identifiers must

be verb.

To develop a plug-in in Eclipse that can analyze identifiers in Java source code and validate them against

identifier naming conventions, we have used Eclipse Java Development Tool (JDT), Eclipse Java Model and

Eclipse Abstract Syntax Tree API (AST API). Following are the steps of implementation.

1) Create parser plugin pro ject in Eclipse with appropriate name and also choose appropriate Eclipse platform

version.

2) Select one of the availab le templates to generate a fully functioning plugin. This work adds Id -Analyzer

command plugin in Eclipse platform, so hello world command template is used.

3) Add packages on which this plugin depends without exp licitly identify ing their originating plugin.

4) Modify plugin.xml file accord ing to requirements to give name to command and menu under the command.

5) After writ ing the handler program create Java archive of the plugin pro ject and copy it to appropriate

destination directory. Now arch ive is ready for deployment.

6) Copy created Java archive and dictionary into Eclipse plugin directory (default directory is /usr/lib/eclipse)

and make it executable.

7) Restart eclipse. This plugin finds all identifiers including classes and methods in current Java project. It

displays its type, whether it is complex word, d ictionary word etc.

V. PERFORMANCE EVALUATION AND RESULT ANALYSIS

For performance evaluation, comparison of the identifier flaws found by FindBugs[12] and identifier analysis

plug-in of Eclipse has been made. We have used a total of 4 established Java open source applications and

lib raries for investigation from a variety of domains and uses including GUI applicat ions, programmers tools

and charting applications. The variety of projects chosen reduces the possibility of any unanticipated project or

domain specific influence on identifier names. Tab le II shows the version and size of each code base analyzed in

terms of number of classes and thousands of non-commenting source statements (KNCSS), as measured by

FindBugs [12] which is static analysis tool for finding flaws in Java source code.

FindBugs is a static analysis tool used for Java source code which generates priority warn ings for identifier

naming flaws present in Java source code. In each Java open source applications considered for performance

evaluation with respect to same naming conventions of Java identifiers, e.g. capitalization anomaly of class and

method level identifiers, grammat ical sense of class and method level identifiers. Figure 1 shows comparison of

identifier naming flaws found by FindBugs and plug-in developed in each Java open source applications

considered for performance evaluation with respect to same naming conventions of Java identifiers After

analyzing the warnings generated by FindBugs, it has been found that warnings have been generated for

228 | P a g e

minority of classes. Similarly, many of the identifier flaws were found in minority of classes. Also, it shows that

associations between priority one warnings and identifier naming flaws are less common than the more

consistent associations for priority two warnings. All the identifier naming flaws of Java are associated with

priority two warnings in all open source projects.

While analyzing the results of plug-in, it has been observed that percentage of using compound word identifier

names is more as compare to simple word identifier names in all open source projects considered during result

analysis. The reason behind is single word may not be as meaningful as compound word considering its English

dictionary meaning. The compound word identifier name also convey the purpose of using that name and

function actually it performs. In short compound word identifier names increase readability of code during

maintenance and testing if constructed properly.

Figure 1

It has been also found that majority of the compound word identifier names used in all open source Java projects

considered are non-dictionary words. If compound word identifier names are used and they are not carrying

dictionary meaning then they are not useful in increasing readability and understanding of code during

maintenance and testing. Also, compound word identifier names poses a challenge of splitting them before

finding out their d ictionary meaning. So, use of compound word identifier names that doesn’t have dictionary

meaning should be avoided because unnecessarily it inc rease splitting overhead before finding out their

dictionary meaning without any clear benefit in enhancing readability and understanding of code. Figure 2

shows percentage of compound word identifier names with dictionary meaning. It includes identifier n ames at

229 | P a g e

variable, class and method level in all open source Java projects considered. It also shows overall percentage of

compound word identifier names that are dictionary words.

Figure 2

Also, as a part of result analysis, percentage of dictionary word identifiers found in all Java open source project

has been calculated which will have impact on readability and understanding of code during maintenance. Also

number of simple and compound word identifier names found in each Java project have been record ed. Figure 3

shows percentage of dictionary word identifier names found during analysis of Java open source projects

considered for performance evaluation. This percentage found during analysis will have impact on readability

and understanding of code during maintenance of the same. If more is the percentage of dictionary word

identifier names found, more will be the readability and understanding of the code during maintenance. This can

help in reducing maintenance effort and cost of source code. Figure 4 s hows percentage of simple and

compound word identifiers found in all Java open source projects considered for result analysis. It clearly shows

that percentage of using compound word identifier names is more than than simple word identifier names

because well constructed compound word identifier names with dict ionary meaning can enhance readability of

code during maintenance.

Figure 3

230 | P a g e

Figure 4

VI. CONCLUSION

The contribution of this paper is a detailed understanding of the composition of a good quality identifier name

and the relationship between identifier quality and source code quality. While this will allow the creation of

detailed naming conventions, the emphasis must be on making a coherent contribution to improve the software

development process rather than overloading the programmer with new rules to remember. With the same

identifier naming guidelines of Java, comparison of identifier naming flaws of p lug -in module and FindBugs has

been made. Comparison shows clear enhancement in finding out identifier naming flaws with plugin in all Java

open source applications considered. After analyzing the results it has been observed that percentage of using

compound word identifier names is more as compare to simple word identifier names in all open sourc e projects

considered. The reason behind is single word may not be as meaningful as compound word considering its

English dictionary meaning. The use of compound word identifier names with no dictionary meaning should be

avoided during development because it increases the overhead of splitting them without any enhancement in

code readability and understanding. The plug-in would require evaluation through empirical study; initially with

a small group of programmers and subsequently through surveys of users and the collection of anonymised

usage statistics.

REFRENCES

[1] Simon But ler, Michel Wermelinger, Yijun Yu, Helen Sharp Exploring the Influence of Identifier Names on

Code Quality: an empirical study 14th European Conference on Software Maintenance and Reengineering.

IEEE 2010.

[2] Simon Butler, Michel Wermelinger, Yijun Yu, Helen Sharp Relating Identifier Naming Flaws and Code

Quality: an empirical study 16
th

 Working Conference on Reverse Engineering. IEEE 2009.

[3] F. Deissenboeck and M. Pizka, Concise and consistent naming Software Quality Journal, vol. 14, no. 3, pp.

261-282, Sep 2006.

231 | P a g e

[4] V. Rajlich and N. Wilde, The role of concepts in program comprehension in Proc. 10th Intl Workshop on

Program Comprehension. IEEE 2002,pp. 271-278.

[5] Sun Microsystems, Code conventions for the Java programming language

http://java.sun.com/docs/codeconv, 1999.

[6] A. Vermeulen, S. W. Ambler, G. Bum gardner, E. Metz, T. Misfeldt, J. Shur, and P. Thompson, The

Elements of Java Style Cambridge University Press, 2000.

[7] G. Fischer, J. Lusiardi, J. Wolff von Guden berg Abstract Syntax Trees and their Role in Model Driven

Software Development International Conference on Software Engineering Advances. IEEE 2007.

[8] R. P. Buse and W. R. Weimer, A metric for software readability in Proc.Intl Symp. on Software Testing and

Analysis. ACM 2008, pp. 121-130.

[9] P. A. Relf, Achieving software quality through identifier names 2004, p resented at Qualcon 2004

http://www.aoq.asn.au/conference2004/conference.html.

[10] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, Whats in a name: A study of identifiers in 14th IEEE Intl

Conf. on Program Comprehension. IEEE 2006, pp. 3-12.

[11] C. Boogerd and L. Moonen, Evaluating the relation between coding standard violations and faults within

and across software versions in Proc. 6th Intl Working Conf. on Mining Software Repositories. IEEE 2009,

pp.41-50 .

[12] Find Bugs, Find Bugs in Java programs http://fndbugs.sourceforge.net/,2008.

[13] K . Atkinson, SCOW L readme http://wordlist.sourceforge.net/scowlreadme,2004.

[14] Paul Anderson, Thomas Reps, Tim Teitel baum and Mark Zarins, Design and Implementation of a Fine

Grained Software Inspection Tool IEEE Transactions on Software Engineering, vol. 29, no. 8, August 2003,

pp.721-733

[15] Pau l Anderson, Thomas Reps, Tim Teitel baum and Mark Zarins Tool Support for Fine-Grained Software

Inspection Published by the IEEE Computer Society, IEEE 2003.

[16] Cathal Boogerd Leon Moonen, Prioritizing Software Inspection Results using Static Profiling Proceedings

of the Sixth IEEE International Workshop on source Code Analysis and Manipulation, IEEE 2006.

[17] Butler, S., Wermelinger, M. , Yijun Yu, Sharp, H.” INVocD: Identifier name vocabulary dataset” Mining

Software Repositories (MSR), 2013 10th IEEE Working Conference in May 2013

[18] Arnaoudova, V., Eshkevari, L.M., Di Penta, M., Oliveto, R. more authors ”REPENT: Analyzing the Nature

of Identifier Renamings” Software Engineering, IEEE Transactions on (Volume:40 , Issue: 5) March 2014

[19] http://www.eclipse.org

