International Journal of Advance Research in Science and Engineering
Vol. No. 5, Issue No. 08 , August 2016

www.ijarse.com IJARSE

ISSN 2319 - 8354

IDETIFIER ANALYSIS THROUGH CODE

INSPECTION

Sujata S. Deshmukh', S.Pratap Singh?

2 Computer Engineering Dept., SP’s Institute Of Knowledge , College of Engineering
Pimple Jagtap, Pune. Maharashtra (India)

ABSTRACT

Software quality is not defined in terms of quality attributes but instead must be inferred from characteristics
that correlate to quality attributes and defect attributes. Readability of source code in one such attribute.
Software characteristics have been identified by empirical research, which correlate well to source code. One of
such software characteristic is choice of identifier name. Identifier names are key mechanisms by which readers
of source code such as maintenance programmers access and understands source code. There exists a
relationship between flawed identifier names and software maintenance cost. Studying such a relationship is
useful to assess whether naming conventions have impact on maintenance effort and to gain a deeper and finer-
grained understanding of which program comprehension issues lead to code quality problems. We present in

this paper the identifier analysis method that can identify flaws in Java identifier names.

Keywords: component; formatting; style; styling; insert (key words)

I. INTRODUCTION

Modern programming languages permit the creation of clear, readable and meaningful identifiers. Programming
conventions provide guidance on the typographical form of identifier names associated with particular language
constructs and the parts of speech to be used in different types of identifiers. However, only limited advice is
given on matters such as the length of identifiers. The poor identifier names are barriers to source code
comprehension are sufficient reason to create good quality identifiers. However, there might be other
consequences of poor quality identifier names such as poor understanding of code during maintenance and
increased cost of maintenance. Given the importance of the natural language content and structure of identifier
names to the readability of source code one can find relationship that exists between software quality and the
quality of identifiers names used in the source code. [1]

Identifier name quality is multifactorial. The use of typography, as defined in programming conventions gives
the reader clues to the role of each identifier. However, typography alone is insufficient. The good identifier
name should clearly communicate the concept represented and its function through the use of natural language.
Identifier names are crucial components of source code which have impact on program comprehension. As

artifacts of the programmers thought processes, identifier names are mechanism by which source code may be

22|Page

International Journal of Advance Research in Science and Engineering
Vol. No. 5, Issue No. 08 , August 2016

www.ijarse.com IJARSE

ISSN 2319 - 8354

accessed and understood. Similarly, they may reflect difficulties the programmer had understanding a problem
and thus of potential defects in the finished software.

Although there is work relating identifier naming and program comprehension, work has not been done that
directly relates identifier naming and code quality. Studying such a relationship is useful help to assess whether
naming conventions have impact on maintenance effort and to gain a deeper and fine-grained understanding of
which programcomprehension issues lead to code quality problems.[2][4]

As Eclipse is widely used platform for Java development, we have used Eclipse Java Development Tool (JDT),
Eclipse Java

Model and Eclipse Abstract Syntax Tree APl (AST API) to develop the identifier analysis module that can be

used as plugin for Eclipse.

1. LITERATURE SERVEY

A IMPORTANCE OF CODING CONVENTIONS IN SOFTWARE MAINTENANCE AND TESTING
Coding standards have become increasingly popular as a means to ensure software quality throughout the
development process. They typically ensure a common style of programming which increases maintainability
and prevent the use of potentially problematic constructs, thereby increasing reliability. The rules in such
standards are usually based on expert opinion gained by years of experience with a certain language in various
contexts. Over the years various tools have become available that automate the checking of rules in a standard
helping developers in locating potentially difficult or problematic areas in the code. These also include
commercial offerings. Such tools generally come with their own sets of rules against which they check for
violations of coding standards. However, in spite of the availability of appropriate standards and tools, there are
several issues hindering adoption. In spite of the widespread use of coding standards and tools enforcing their
rules, there is little empirical evidence supporting the intuition that they prevent the introduction of faults in
software. [2][10][14][16]

Naming conventions make programs more understandable by making them easier to read. They can also give
information about the function of the identifier-for example, whether it is a constant, package or class which can
be helpful in understanding the code. Code conventions are important to programmers for a number of reasons
[51[6]:

1) 80 percent of the lifetime cost of a piece of software goes to maintenance.

2) Hardly any software is maintained for its whole life by the original author.

3) Code conventions improve the readability of the soft- ware allowing engineers to understand new code more
quickly and thoroughly.

4) If developer ship source code as a product, developer need to make sure it is as well packaged and clean as

any other product.

B. ROLE OF INTERMEDIATE PROGRAM REPRESENTATION IN SOFTWARE MAINTENANCE
A fundamental goal of software engineering is to make programdevelopment and maintenance easier, faster and

less error prone. This includes addressing problems like:

23|Page

International Journal of Advance Research in Science and Engineering
Vol. No. 5, Issue No. 08 , August 2016

www.ijarse.com IJARSE

1) Understanding what an existing program does and how it works.

2) Understanding the differences between several versions of a program.

3) Understanding whether design rules have been followed in coding phase.

Tools that assist programmers with such problems are most useful if they are language based that is, if they
incorporate knowledge about the programming language in use. On the other hand, it is desirable to base these
tools on language independent algorithms and data structures so as to avoid the need to re-design and redevelop
a set of tools for every different programming language. One of such intermediate representation which is
widely used in software maintenance is Abstract Syntax Tree (AST). Abstract syntax trees (ASTs) [7] are
known from compiler construction where they build the intermediate data format which is passed from the
analytic front-end to the synthetic back-end. In software development, ASTs are used as a model of the source
code. They represent a programon the level of the abstract syntaxthat means that they are independent from the
concrete syntax for identifiers, operators, conditions or statements of the underlying programming language.
The striking advantage in the use of ASTs in contrast to source programs is the higher level of abstraction.
Hence, the algorithms have to be developed only once and can then be used for programs written in various
different languages. The Abstract Syntax Tree is the base framework for many powerful tools of the Eclipse
IDE including re-factoring, quick fix and quick assist. The Abstract Syntax Tree maps plain Java source code in
a tree form. This tree is more convenient and reliable to analyze and modify programmatically than text-based
source. [7][14]

111. ACHIEVING CODE QUALITY THROUGH IDENTIFIER NAMES

The development of software, like any other manufacturing processes can introduce defects in the resultant
product.

However, unlike other manufacturing processes, software is manufactured extensively once and then modified
until sufficient defects have been removed such that the customer will accept the product. The customer may
only be concerned with capability and will have no further interest in the internal software structure. However,
some customers are becoming increasingly interested in the internal structure of software delivered to them as
this has a flow-on effect to the cost of maintaining the product (i.e., the cost of modifying and adding new
capability which is distinct from the activity of software bug fixes). Customers may hence contractually impose
software quality standards on their contractors. These standards are interpreted by the contractor and typically
further standards are derived such as the project coding standards. [2][8][9]

However, the software engineer suffers from various cognitive limitations that make the production of readable
software a difficult task. In addition, the software engineer is not prepared well by their education to address
quality in their software development practices. Often, they are given very general instruction regarding what
constitutes software quality and rarely they are instructed in how to achieve the quality production of software.
Their education is heavily waited towards discussing the production phase of the software life cycle with the
maintenance phase given a rudimentary treatment. Similarly, their peer culture and the culture of their
manage ment places little emphasis on future maintenance of the software during the development phase. There
are no industry wide adoptions of software quality tools that actively assist the software engineer to produce a

quality product. [9][15]
24|Page

ISSN 2319 - 8354

International Journal of Advance Research in Science and Engineering
Vol. No. 5, Issue No. 08 , August 2016

www.ijarse.com I[JARSE

ISSN 2319 - 8354

A software quality characteristic that has the potential to improve software quality is the choice of identifier
name and this is particularly so in large software systems. Identifier naming style guidelines supported by
empirical evidence and generally accepted by software professionals to direct towards improved source code
readability are candidates for automation by a static analysis tool. Such an automated tool could make visible
aspects of software quality that are less keenly perceived by the novice programmer and could assist in their
education along the path to expert status. Hence is the motivation to develop a plugin that can do identifier

analysis in Eclipse IDE[19] which is widely used platform for Java develop ment.[1][8][10]

Table I shows identifier naming style guidelines in general to achieve code quality through identifier

names. [2]

TABLE |

IDENT IFIER NAMING ST YLE GUIDELINES

should be composed of
no more than four
words or
abbreviations.

Name Description Examples of flawed
identifiers
Capitalisation Identifiers should be HT MLEditorKT,
Anomaly appropriately pagecounter, fooBAR
capitalised
Excessive Words Identifier names HT MLEditorKit,

pagecouoatToRawlnt-Bits()

Extemnal
Underscores

Identifiers should not
have either leadingor

trailing underscores.

foo

Long Identifier
Name

Identifier names of
more than twenty
above Characters
should be avoided
where possible.

getPolicyQualiersRejected

Naming
Convention
Anomaly

Identifiers should not
consist of non-standard
mixes of upper and
lower case characters.

FOO_ bar

Non-Dictionary
Words

Identifier names
should be composed of
words found inthe
dictionary and
abbreviations and
acronymsthat are
more commonly used
than the unabbreviated

form.

strlen

Number of Words

Identifiers should be

composed of between

ArrayOuOfBoundsExceptio

n,

225|Page

International Journal of Advance Research in Science and Engineering
Vol. No. 5, Issue No. 08 , August 2016

www.ijarse.com I[JARSE

ISSN 2319 - 8354

two and four words. name

Numeric Identifier | Identifiers should not FORTY TWO
Name be composedentirely

of numeric words and

numbers.
Short Identifier Identifiers should not name
Name consist of fewer than

eight characters, with
the exception of

¢, d,e, g i, in, inOut, j,
k,

m,n,o,out, t, XY,z

Type Encoding Type information iCount
should not be encoded
in identifier names
using Hungarian
notation or similar

IV. IMPLEMENTATION DETAILS

Today’s large, complex software systems require automatic software analysis and recommendation systems to
help the software engineer in completing maintenance tasks effectively and efficiently. The software maintainer
must gain at least partial understanding of the concepts represented by existing source code before making
modifications. A programmer codes the concepts and actions in terms of program structure and helps to convey
the intent and application domain concepts to human readers through identifier names and comments. Thus,
many of the program search, concern location, code reuse and quality assessment tools for software engineers
are based on analyzing the words that programmers use in comments and identifiers. Hence identifier analysis in
source code becomes important.
In previous section, it has been seen that there exist a relation between identifier naming conventions and quality
of software developed as well as readability and understanding of the same during maintenance. There is a need
of tool that can find identifiers automatically in Java source code and validate them against identifier naming
conventions of Java. As Eclipse is widely used platform for Java development, we have developed a module that
can do identifier analysis automatically of entire Java project in Eclipse workspace. By extending the Eclipse
functionality with the addition of identifier analysis plugin developers can get identifier analysis of all Java
projects in workspace in just single click of mouse. With identifier analysis it doesn’t only mean finding the
identifiers and validate them against naming conventions but also there is need to find other fields related to
identifiers which contribute to readability of code being analy zed during its maintenance.
For each identifier found there is need to find following fields. 1) Type of identifier
It can be of type class, method, variable, interface or constants.
2) Simple or compound word
This field find out whether identifier found is single word identifier i.e. simple or it is combination of multiple
words i.e. compound word.

226|Page

International Journal of Advance Research in Science and Engineering
Vol. No. 5, Issue No. 08 , August 2016

www.ijarse.com IJARSE

3) Dictionary word or non dictionary word

This field find out whether name used for identifier is belonging to English dictionary or not. This field has
impact on readability of code during maintenance of the same.

4) Grammatical sense of identifier

In this field if identifier found is dictionary word then there is need to find grammatical sense of the same i.e.
noun, verb. According to Java coding conventions class identifiers should be nouns and method identifiers must
be verb.

To develop a plug-in in Eclipse that can analyze identifiers in Java source code and validate them against
identifier naming conventions, we have used Eclipse Java Development Tool (JDT), Eclipse Java Model and
Eclipse Abstract Syntax Tree AP1 (AST API). Following are the steps of implementation.

1) Create parser plugin project in Eclipse with appropriate name and also choose appropriate Eclipse platform
version.

2) Select one of the available templates to generate a fully functioning plugin. This work adds Id-Analyzer
command plugin in Eclipse platform, so hello world command template is used.

3) Add packages on which this plugin depends without explicitly identifying their originating plugin.

4) Modify plugin.xml file according to require ments to give name to command and menu under the command.

5) After writing the handler program create Java archive of the plugin project and copy it to appropriate
destination directory. Now archive is ready for deployment.

6) Copy created Java archive and dictionary into Eclipse plugin directory (default directory is /usr/lib/eclipse)
and make it executable.

7) Restart eclipse. This plugin finds all identifiers including classes and methods in current Java project. It

displays its type, whether it is complex word, dictionary word etc.

V. PERFORMANCE EVALUATION AND RESULT ANALYSIS

For performance evaluation, comparison of the identifier flaws found by FindBugs[12] and identifier analysis
plug-in of Eclipse has been made. We have used a total of 4 established Java open source applications and
libraries for investigation from a variety of domains and uses including GUI applications, programmers tools
and charting applications. The variety of projects chosen reduces the possibility of any unanticipated project or
domain specific influence on identifier names. Table 11 shows the version and size of each code base analyzed in
terms of number of classes and thousands of non-commenting source statements (KNCSS), as measured by
FindBugs [12] which is static analysis tool for finding flaws in Java source code.

FindBugs is a static analysis tool used for Java source code which generates priority warnings for identifier
naming flaws present in Java source code. In each Java open source applications considered for performance
evaluation with respect to same naming conventions of Java identifiers, e.g. capitalization anomaly of class and
method level identifiers, grammatical sense of class and method level identifiers. Figure 1 shows comparison of
identifier naming flaws found by FindBugs and plug-in developed in each Java open source applications
considered for performance evaluation with respect to same naming conventions of Java identifiers After

analyzing the warnings generated by FindBugs, it has been found that warnings have been generated for
27|Page

ISSN 2319 - 8354

International Journal of Advance Research in Science and Engineering
Vol. No. 5, Issue No. 08 , August 2016

www.ijarse.com I[JARSE

ISSN 2319 - 8354

minority of classes. Similarly, many of the identifier flaws were found in minority of classes. Also, it shows that
associations between priority one warnings and identifier naming flaws are less common than the more
consistent associations for priority two warnings. All the identifier naming flaws of Java are associated with
priority two warnings in all open source projects.

TABLE 11
SOURCE CODE ANALYZED

Source KNCSS classes

Ant 1.71 T2 1639
Tomcat 6.08 114 2128
jEdit 4.3 58 2069
jFreeChart 1.01 61 1031

While analyzing the results of plug-in, it has been observed that percentage of using compound word identifier
names is more as compare to simple word identifier names in all open source projects considered during result
analysis. The reason behind i single word may not be as meaningful as compound word considering its English
dictionary meaning. The compound word identifier name also convey the purpose of using that name and
function actually it performs. In short compound word identifier names increase readability of code during

maintenance and testing if constructed properly.

Identifier Naming Flaws Found
o

50 — B ——
-_,.u

Ant T t JF Chart i =
omca reeCha JEdit @ FindBugs

Java Open Source Applications 4 Plug-in

Figure 1

It has been also found that majority of the compound word identifier names used in all open source Java projects
considered are non-dictionary words. If compound word identifier names are used and they are not carrying
dictionary meaning then they are not useful in increasing readability and understanding of code during
maintenance and testing. Also, compound word identifier names poses a challenge of splitting them before
finding out their dictionary meaning. So, use of compound word identifier names that doesn’t have dictionary
meaning should be avoided because unnecessarily it increase splitting overhead before finding out their
dictionary meaning without any clear benefit in enhancing readability and understanding of code. Figure 2

shows percentage of compound word identifier names with dictionary meaning. It includes identifier names at

228|Page

International Journal of Advance Research in Science and Engineering
Vol. No. 5, Issue No. 08 , August 2016
IJARSE

www.ljarse.com ISSN 2319 - 8354

variable, class and method level in all open source Java projects considered. It also shows overall percentage of

compound word identifier names that are dictionary words.

[a)]
[}

Ln
[}

iy
(]

L
[}
i

P
©
I

[y
[}
I

% of Compound Word Identifiers
Names with Dictionary Meaning

(]
I

Ant Tomcat |FreeChart jEdit

M ariahle % M Method %
Class %4 m Cwerall 25

Java Open Source Application

Figure 2

Also, as a part of result analysis, percentage of dictionary word identifiers found in all Java open source project
has been calculated which will have impact on readability and understanding of code during maintenance. Also
number of simple and compound word identifier names found in each Java project have been recorded. Figure 3
shows percentage of dictionary word identifier names found during analysis of Java open source projects
considered for performance evaluation. This percentage found during analysis will have impact on readability
and understanding of code during maintenance of the same. If more is the percentage of dictionary word
identifier names found, more will be the readability and understanding of the code during maintenance. This can
help in reducing maintenance effort and cost of source code. Figure 4 shows percentage of simple and
compound word identifiers found in all Java open source projects considered for result analysis. It clearly shows
that percentage of using compound word identifier names is more than than simple word identifier names
because well constructed compound word identifier names with dictionary meaning can enhance readability of

code during maintenance.

9% of Enhancement
in Performance

4
40
35
30 A
25
20 ~
15 4
10 -

0+ : : —

% of Enhanced Performance

Ant Temzat JFreechart jEdt

Java Open Source Application

Figure 3

229|Page

International Journal of Advance Research in Science and Engineering
Vol. No. 5, Issue No. 08 , August 2016

www.ijarse.com I[JARSE

ISSN 2319 - 8354

'g 100
3 90
g' 80
5 "g T
oy 60 T
89 50—
L 8 a0 -
_E‘E 20—
G820 - —
©.:2 10 -
S il
Ant Tomcat JFreecChart JEdit
Simple
Word
u Compound

Java Open Scurce Appizaton Word

Figure 4

V1. CONCLUSION

The contribution of this paper is a detailed understanding of the composition of a good quality identifier name
and the relationship between identifier quality and source code quality. While this will allow the creation of
detailed naming conventions, the emphasis must be on making a coherent contribution to improve the software
development process rather than overloading the programmer with new rules to remember. With the same
identifier naming guidelines of Java, comparison of identifier naming flaws of plug-in module and Find Bugs has
been made. Comparison shows clear enhancement in finding out identifier naming flaws with plugin in all Java
open source applications considered. After analyzing the results it has been observed that percentage of using
compound word identifier names is more as compare to simple word identifier names in all open source projects
considered. The reason behind is single word may not be as meaningful as compound word considering its
English dictionary meaning. The use of compound word identifier names with no dictionary meaning should be
avoided during development because it increases the overhead of splitting them without any enhancement in
code readability and understanding. The plug-in would require evaluation through empirical study; initially with
a small group of programmers and subsequently through surveys of users and the collection of anonymised

usage statistics.

REFRENCES

[1] Simon Butler, Michel Wermelinger, Yijun Yu, Helen Sharp Exploring the Influence of Identifier Names on
Code Quality: an empirical study 14th European Conference on Software Maintenance and Reengineering.
IEEE 2010.

[2] Simon Butler, Michel Wermelinger, Yijun Yu, Helen Sharp Relating Identifier Naming Flaws and Code
Quality: an empirical study 16" Working Conference on Reverse Engineering. IEEE 2009.

[3] F. Deissenboeck and M. Pizka, Concise and consistent naming Software Quality Journal, vol. 14, no. 3, pp.
261-282, Sep 2006.

230|Page

International Journal of Advance Research in Science and Engineering
Vol. No. 5, Issue No. 08 , August 2016

www.ijarse.com I[JARSE

[4] V. Rajlich and N. Wilde, The role of concepts in program comprehension in Proc. 10th Intl Workshop on
Program Comprehension. |[EEE 2002,pp. 271-278.

[5] Sun Microsystems, Code conventions for the Java programming language
http://java.sun.com/docs/codeconv, 1999.

[6] A. Vermeulen, S. W. Ambler, G. Bum gardner, E. Metz, T. Misfeldt, J. Shur, and P. Thompson, The
Elements of Java Style Cambridge University Press, 2000.

[7]1 G. Fischer, J. Lusiardi, J. Wolff von Guden berg Abstract Syntax Trees and their Role in Model Driven
Software Develop ment International Conference on Software Engineering Advances. IEEE 2007.

[8] R. P. Buseand W. R. Weimer, A metric for software readability in Proc.Intl Symp. on Software Testing and
Analysis. ACM 2008, pp. 121-130.

[9] P. A. Relf, Achieving software quality through identifier names 2004, presented at Qualcon 2004
http://www.aoq.asn.au/conference2004/conference.html.

[10] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, Whats in a name: A study of identifiers in 14th IEEE Intl
Conf. on Program Comprehension. |EEE 2006, pp. 3-12.

[11] C. Boogerd and L. Moonen, Evaluating the relation between coding standard violations and faults within
and across software versions in Proc. 6th Intl Working Conf. on Mining Software Repositories. IEEE 2009,
pp.41-50.

[12] Find Bugs, Find Bugs in Java programs http://fndbugs sourceforge.net/,2008.

[13] K. Atkinson, SCOW L readme http://wordlist.sourceforge.net/scowlreadme,2004.

[14] Paul Anderson, Thomas Reps, Tim Teitel baum and Mark Zarins, Design and Implementation of a Fine
Grained Software Inspection Tool IEEE Transactions on Software Engineering, vol. 29, no. 8, August 2003,
pp.721-733

[15] Paul Anderson, Thomas Reps, Tim Teitel baum and Mark Zarins Tool Support for Fine-Grained Software
Inspection Published by the IEEE Computer Society, |IEEE 2003.

[16] Cathal Boogerd Leon Moonen, Prioritizing Software Inspection Results using Static Profiling Proceedings
of the Sixth IEEE International Workshop on source Code Analysis and Manipulation, IEEE 2006.

[17] Butler, S., Wermelinger, M. , Yijun Yu, Sharp, H.” INVocD: Identifier name vocabulary dataset” Mining
Software Repositories (MSR), 2013 10th IEEE Working Conference in May 2013

[18] Amaoudova, V., Eshkevari, L.M., Di Penta, M., Oliveto, R. more authors "REPENT: Analyzing the Nature
of Identifier Renamings” Software Engineering, IEEE Transactions on (Volume:40 , Issue: 5) March 2014

[19] http://www.eclipse.org

231|Page

ISSN 2319 - 8354

