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ABSTRACT 

For industrial applications, the ceramics composites are machined in large scale using end milling process. 

Due the abrasive reinforcement particle of composite, the failure in tool life and surface quality are possible. 

This research work focuses on developing the mathematical models of cutting force (FR), Metal Removal Rate 

(MRR) and surface roughness (Ra) and to optimize it. The composite design with L31 empirical model is used for 

conducting the basic trials on Al/SiC composites of various compositions. The XRD, EDS, optical microscopic 

images of Al/SiC composites are analyzed. The models developed for predicting responses were tested by 

analysis of variance (ANOVA) to evaluate its adequacy. The optimal configuration of machining parameters is 

identified which yields 31.9326mm
3
/s, 1.4443µm and 41.4364N of MRR, Ra and FR respectively. 
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I. INTRODUCTION  

Generally, the ceramic composites are aluminium based composites [1] which are reinforced with ceramic 

particles like Si3N4 [2], A12O3 [3], B4C [4], TiC [5], etc. The Al/SiC composites are most preferable for the 

industrial applications due to its low density and high strength [6].  

The machining of ceramic composites was difficult because of its non-homogeneous, anisotropic and reinforced 

by abrasive materials [7]. The machined composite may experience a significant damage and high wear rate on 

the cutting tools. The machining of composite materials was depending on several conditions like material 

properties, relative content of the reinforcement and the response to the machining process [8].  

Fei et al. [9] studied the compound machining of the engineering materials to increase the efficiency of the 

machining method. It was concluded that the machine can be suggested based on the efficiency of output 

parameters but optimizing all the outputs in a single machine mode was tedious.  

End milling is a vital and common machining process because of its flexibility and capability to produce various 

profiles even with the curved surfaces. It has the ability to remove material with good surface quality and the 

milled surfaces are largely used to mate the aerospace, automobile, biomedical and manufacturing industries 

applications [10]. It has wide use in these industries because of its good performance in processing difficult-to-

machine materials [11].  
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The major aims of the machining process are improving the surface roughness quality and maximizing the 

material removal rate (MRR) with optimal cutting force. Traditionally, trial-and-error and heuristic approaches 

were employed to obtain the optimal machining parameters. It was well recognized that these methods were 

time consuming and lead to long machining periods with large machining cost [12]. 

Design of Experiments (DOE) is a powerful analysis tool for modelling and analyzing the influence of control 

factors on output performance. The traditional experimental design is difficult to be used especially when 

dealing with large number of experiments and when the number of machining parameters increased [13]. The 

most important stage in the design of experiment lies in the selection of the control factors [14]. 

Oktem et al. [15] had focused on the development of an effective methodology to determine the optimum 

cutting conditions leading to minimum surface roughness (Ra) in milling by coupling the Response Surface 

Methodology (RSM) with the developed genetic algorithm (GA). Afazov et al. [16] studied the micro milling 

conditions which influence the cutting force for optimizing the process stability. Later, Emel et al. [17] had done 

a work to optimize the cutting fluids and the cutting parameters in end milling process using DOE. As a result, a 

new machining method with minimal machining cost and without environmental impacts was developed. 

The optimization of all the output parameters of end milling process was a tedious. This research work focuses 

on developing the mathematical models of cutting force (FR), Metal Removal Rate (MRR) and surface 

roughness (Ra) and to optimize it. And also the adequacies in predicting the responses by the developed models 

were analyzed along with experimental results and the deviation from the optimal configuration was evaluated.  

II. MATERIALS AND METHODS 

2.1 Materials 

The end milling tests were conducted with BATIBOI-NOMO universal milling machine (Fig. 1 (a)). In the 

milling experiments, Al 6061/SiC composite material were used as the work piece with varying reinforcement 

wt. % of 5, 10 and 15, which had the dimension of 100*100*10mm
3
. Using the stir casting method, the Al/SiC 

composites were manufactured with the SiC particle size of 37μm. For machining these composites for good 

machinability, the Poly Crystalline Diamond (PCD) tools were selected [18].The PCD coated tool (Fig. 1 (b)) of 

thickness 0.6mm and 12mm in diameter was used. 

 

Fig. 1 (a) Universal milling machine (b) PCD coated tool  
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2.2 Measurements 

The MRR was calculated using the equation (1) and the cutting forces was measured using the 3-axis milling 

tool dynamometer- Kistler 9257B (Fig. 2 (a)). The force data were acquired via DAQ card and an amplifier, and 

it was processed by Dynoware software. Using this force setup, three force components (Fx, Fy and Fz) were 

measured simultaneously and its resultant (FR) was calculated using equation (2). The Surface roughness (Ra) of 

the machined surface was measured using ROGOSOFT 90G Profilometer (Fig. 2 (b)) with the accuracy of 

0.001µm. 

Time

DOC*b*l
MRR                   (1) 

2
z

2
y

2
xR FFFF                   (2) 

 Where, l = length of the plate 

  b = breath of the plate 

  DOC = depth of cut 

  FR = Resultant cutting force 

  Fx, Fy and Fz = Cutting force along x, y and z-axis respectively. 

 

Fig. 2 (a) 3-axis dynamometer - Kistler 9257B (b) Profilometer - ROGOSOFT 90G 

III. CHARACTERIZATION  

3.1 X-ray diffraction analysis 

The X-ray diffraction (XRD) (Model: X’per PRO) pattern of the Al/SiC composite was shown in Fig. 3 and it 

matches with the JCPDS file #04-0787 [19]. It exhibits strong orientation of (111) plane at 38.33° and weak 

orientation of (311) peak at 77.91°. An osbornite phase was identified; and as a result of (111) plane and (220) 

plane intensity ratio; it was almost similar to the preferred orientation of Al [20]. It can be seen that the higher 

full width half maximum (FWHM) appeared along the (200) plane at 44.56°, resulting in the calculated 
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crystalline size of about 44.9 nm. The unit cell of the Al/SiC composite exhibits a hexagonal structure with a = b 

= 4.063460 Å and c = 4.068095Å of lattice. 

 

Fig. 3 XRD pattern of Al/SiC composite 

3.2 Energy Dispersive Spectrum analysis 

The Energy Dispersive Spectrum (EDS) analysis of Al/SiC composite was shown in Fig. 4 which reveals the 

presence of Al, Si and C elements in it.  

 

Fig. 4 EDS image of Al/SiC composite 

3.3 Structural analysis 

The optical microscopic images of the Al/SiC composites with varying reinforcement wt. % of 5, 10 and 15 

were shown in Fig. 5 (a-c). The arrangement of SiC particles were clear and uniform on the Al matrix was 

evidenced from optical microscopic images. The presence of SiC increases homogeneously with an increase in 

SiC wt. % which was confirmed through the black spot on the matrix. 
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Fig. 5 Microstructure images of Al/SiC composite (a) 5 wt. % (b) 10 wt. % (c) 15 wt. % 

IV. STASTICAL ANALYSES 

The composite design involves the study about responses based on the combinations, estimating the coefficients, 

fitting the experimental data, predicting the response and checking the adequacy of the fitted model [21]. Here, 

the responses are MRR, Ra and FR for the independent variables (input parameters) are reinforcement %, Depth 

of Cut, and Feed rate, Cutting Speed (Table 1). For this DOE, the two levels design with L31 array was done 

using MINITAB 16. The results of the output parameters after machining process were consolidated for 

mathematical modelling the input parameters (Table 2). The regression equations were formed for the individual 

responses based on the controlling parameters. From this mathematical model, the predicted models were 

estimated and the models are validated through ANOVA [22].  

Table 1 Parameters and Levels in End Milling 

S.No Variable Parameter Units levels 

Low High 

1. A Material  (Wt. %) 5 15 

2. B Depth of Cut (mm) 0.3 0.6 

3. C Feed (mm/min) 30 90 

4. D Cutting Speed (rpm) 100 1000 
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Table 2 Analytical table of responses for the independent variables 

S. 

No. 

Material 

(wt. %) 

Depth of 

Cut (mm) 

Feed 

(mm/min) 

Cutting Speed 

(rpm) 

MRR 

(mm
3
/s) 

Ra 

(µm) 
FR (N) 

1 15 0.3 30 1000 4.5 0.5 36.68 

2 10 0.6 60 550 12.44 2.41 264.8 

3 10 0.6 60 550 12.44 2.41 264.8 

4 10 0.6 60 550 12.44 2.41 264.8 

5 15 0.3 90 100 24.28 4.92 314.03 

6 10 0.6 30 550 7.2 0.52 94.96 

7 10 0.6 60 550 12.44 2.41 264.8 

8 10 0.6 90 550 20.57 2.32 25.82 

9 5 0.3 90 1000 10.29 0.69 49.33 

10 15 0.9 90 1000 36 0.95 88.91 

11 15 0.9 90 100 30.86 6.15 501.65 

12 5 0.9 90 100 27 9.06 752.12 

13 5 0.9 90 1000 31.76 1.24 43.21 

14 10 0.6 60 550 12.44 2.41 264.8 

15 10 0.9 60 550 11.37 1.13 122.16 

16 10 0.6 60 100 12.13 3.51 365.64 

17 10 0.6 60 1000 13.12 0.01 44.86 

18 10 0.6 60 550 12.44 2.41 264.8 

19 15 0.6 60 550 8 1.25 111.07 

20 10 0.6 60 550 12.44 2.41 264.8 

21 15 0.3 90 1000 8 1.25 111.07 

22 10 0.3 60 550 3.6 0.62 88.91 

23 15 0.3 30 100 3.6 2.76 35.62 

24 5 0.6 60 550 8.37 0.78 51.01 

25 5 0.9 30 1000 10.8 2.25 57.81 

26 15 0.9 30 100 4.77 4.82 278.14 

27 15 0.9 30 1000 4.25 0.78 7.28 

28 5 0.3 90 100 1.87 7.57 501.65 

29 5 0.3 30 100 2.4 1.84 373.07 

30 5 0.3 30 1000 4 0.35 4.87 

31 5 0.9 30 100 10.8 2.01 178.72 
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4.1 Mathematical Models of the Responses 

Based on the uncoded data from the given input trails, the mathematical models of the responses were estimated. 

The MRR in the form of regression equation was stated in equation (3), which states that the factor B influences 

more compared to other factors. In equation (4) and (5) were the regression equations of Ra and FR respectively, 

which also declare that the factors B (depth of cut) influences highly in all the configuration results.  

MRR = 1.25478 + 1.75719*A + 33.8615*B - 0.688283*C - 0.0103421*D - 0.0749221*A
2 

- 28.5895*B
2 

+ 

0.00425216*C
2 

+ 1.27E-05*D
2 

- 1.09583*A*B + 0.0162917*A*C - 7.09E-04*A*D + 

0.451806*B*C + 0.00682407*B*D + 2.78E-07*C*D            (3) 

Ra = -1.26391 + 0.138958*A + 4.77893*B + 0.0573958*C - 0.00338567*D + 0.000519467*A
2 

- 1.41126*B
2 

+ 

0.00046443*C
2 

+ 0.00000374314*D
2 

- 0.0154167*A*B - 0.0030125*A*C + 0.0000347222*A*D - 

0.0132639*B*C - 0.00138426*B*D - 0.0000763426*C*D         

 (4) 

FR = 45.5807 + 2.53377*A + 50.2841*B + 10.8129*C - 0.653551*D - 1.23815*A
2 

- 71.7649*B
2 

- 

0.0573376*C
2
 + 0.000460524*D

2
 + 11.2092*A*B - 0.03355*A*C + 0.0210617*A*D + 

2.39389*B*C - 0.22425*B*D - 0.00468241*C*D              (5) 

4.2 Adequacy of model 

The adequacy of the responses were tabulated in Table 3 with R
2
 and R

2
(adj) values. These indicate that the model 

fits the data well and R
2
 was in agreement with R

2
(adj) which supports the prediction capacity of the model. In all 

the models, both the values were good and above 80% which makes a fitness in predicting solutions [23]. 

Table 3 Adequacy of the models 

S. No. Response Std. Deviation R
2 

R
2
(adj) 

1. MRR 3.308 92.7% 86.4% 

2. Ra 1.069 86.6% 84.9% 

3. FR 108.9 89.4% 81.4% 

4.3 ANOVA  

The ANOVA for MRR, Ra and FR is tabulated in Table 4. In all forms of regression, the P values of the 

responses were less than the F value and also it was less than 0.05 i.e. the level of significant was 95%. It 

confirms that the developed models were adequate, and the predicted values were in good agreement with the 

measured data. 

 

 

 

 

 



 

179 | P a g e  

 

Table 4 ANOVA for responses 

Responses Source DF Seq SS Adj SS Adj MS F P 

MRR Regression 14 2234.93 2234.93 159.638 14.59 0 

Residual Error 16 175.11 175.11 10.944   

Total 30 2410.03     

Ra Regression 14 118.318 118.3183 8.4513 7.39 0 

Residual Error 16 18.293 18.2934 1.1433   

Total 30 136.612     

FR Regression 14 731762 731762 52269 4.41 0.003 

Residual Error 16 189652 189652 11853   

Total 30 921414     

 

4.4 Optimization 

Hi

Lo1.0000
D

Optimal

Cur

d = 1.0000

Minimum

FR (N)

d = 1.0000

Minimum

Ra (mm)

d = 1.0000

Maximum

MRR (mm3

y = 41.4364

y = 1.4443

y = 31.9326

100.0

1000.0

30.0

90.0

0.30

0.90

5.0

15.0
Depth of Feed (mm Cutting Material

[5.0] [0.90] [90.0000] [1000.0000]

 

Fig. 6 Optimal configurations for optimal response 

The optimal configuration of input parameters and its responses were identified from the Fig. 6. The optimal 

configuration was 5wt. % reinforced material with machining parameter of high depth of cut 0.9mm, feed rate 

of 90mm/min and cutting speed 1000rpm which provides the global optimal solution of 31.9326mm
3
/s MRR, 

1.4443µm surface roughness and 41.4364N of resultant cutting force for desirability of 98.6%, 99.1% and 

94.5% respectively. For the same optimal condition, the experimental result was 31.76mm
3
/s MRR, 1.24µm Ra 

and 43.2N FR which was 0.5%, 14% and 4% deviation from the predicted results which shows the acceptable 

prediction.  
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VI. CONCLUSION 

The Al/SiC composite with varying reinforcement composition was done to study its machining nature was 

successful. The Al/SiC composite was characterized using XRD, EDS and optical microscopic images which 

inferred the structural changes in orientation and surface due reinforcement particle. The influence of machining 

parameters on the responses was discussed and the effects were evidenced through SEM images. Using RSM, 

the optimal configuration of machining parameter which provides optimal response was identified. The optimal 

configuration was 5wt. % reinforced material with machining parameter of high depth of cut 0.9mm, feed rate 

of 90mm/min and cutting speed 1000rpm which provides the global optimal solution of 31.9326mm
3
/s MRR, 

1.4443µm surface roughness and 41.4364N of resultant cutting force which shows the acceptable prediction. 
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