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ABSTRACT 

MHD boundary layer flow and heat transfer of a viscoelastic fluid over an exponentially stretching sheet 

embedded in a thermally stratified medium subject to radiation are examined. Using similarity transformation 

the governing boundary layer non-linear partial differential equations are converted into non-linear ordinary 

differential equations. Homotopy analysis method (HAM) is applied to get series solution of obtained 

equaations. The convergence of the obtained series solution is discussed explicitly.  It is found that the heat 

transfer rate at the surface increases in presence of thermal stratification. Fluid velocity decreases with 

increasing magnetic parameter. Temperature gradient increases considerably with increase of stratification 

parameter. 
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I. INTRODUCTION 

In recent years, the study of non-Newtonian fluids has achieved a lot success due to their practical applications 

in various fields like manufacturing of foods and papers, manufacturing of plastic sheets, etc. The study of 

boundary layer flow over a continuous solid surface moving with a constant speed was first studied by Sakiadis 

[1] in 1961.  Later Crane [2] extended this problem to a stretching sheet whose surface velocity varies linearly 

with a certain distance from a fixed point. Chang [3] derived a closed form solution of the non-Newtonian flow 

problem of Rajgoplal et al. [4]. Char [5] discussed the effects of magnetic field and power law surface 

temperature on heat and mass transfer from a continuous flat surface. Heat and mass transfer characteristics in 

the presence of transverse magnetic field were obtained by Abel et al. [6]. In heat transfer process thermal 

radiation also place a vital role. Rapits [7], Abel and Gousia [8] analysed the viscoelastic fluid flow and heat 

transfer in the presence of thermal radiation under various physical conditions. Most of the researchers 

concentrated on the flow analysis caused by stretching the sheet linearly. Magyari and Keller [9] focused on 

heat and mass transfer on boundary layer flow due to an exponentially continuous stretching sheet. Elbashbeshy 

[10] examined the flow and heat transfer characteristics over an exponentially stretching continuous surface 

http://www.sciencedirect.com/science/article/pii/S2090447912000950#b0025
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with suction. Bidin and Nazar [11] presented the numerical solutions for the problem of boundary layer flow 

over an exponentially stretching sheet in the presence of radiation. The flow due to a heated surface immersed in 

a stable stratified viscous fluid has been investigated experimentally and analytically by Yang et al. [12]. 

Recently, Mukhopadhyay [13] analysed the MHD boundary layer flow and heat transfer towards an 

exponentially stretching sheet embedded in a thermally stratified medium by taking suction into account. 

Hence, the aim of the present work is to study the characteristics of MHD boundary layer flow and heat transfer 

of a viscoelastic fluid over an exponentially stretching sheet embedded in a thermally stratified medium in the 

presence of radiation using HAM [14]. 

II. MATHEMATICAL FORMULATION 

Consider the flow of an incompressible viscoelastic electrically conducting fluid past a flat heated sheet 

coinciding with the plane 0y  and the flow being confined to 0y . The flow is generated due to stretching 

the sheet exponentially by the application of two equal and opposite forces along the x -axis. So that the sheet is 

stretched keeping the origin fixed. A variable magnetic field of strength B  is applied in the direction to normal 

the plate. The sheet is of temperature  xwT  and is embedded in a thermally stratified medium of variable 

temperature  xT  where    xTxwT  . It is assumed that   L
x

ebTxwT 2
0
 ,   L

x

ecTxT 2
0   

where 
0T  is the reference temperature, 00,  cb  are constants. 

The equations of continuity, momentum, energy and concentration for the flow of viscoelastic fluid are 
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where u  and v  are the velocity components in x  and y  directions,
 
  is the kinematic viscosity,

 0k is the 

elastic parameter,   is the fluid density,   is the electrical conductivity of the fluid, T  is the temperature in 

the boundary layer, k  is the thermal conductivity, rq  is the radiative heat flux. 

The boundary conditions are 

.yasTTu

yatwTTvL
x

e0UwUu





,0

,0,,0,         (4) 

Here, the subscripts ,w
 
refer to the surface and ambient conditions, respectively. wU

 
is the stretching 

velocity, 
0U  is the reference velocity, L  is the reference length. 
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It is assumed that the variable magnetic field  xB  is of the form: 

    ,2
0

L
x

exBxB   

where 
0B  is the constant magnetic field. 

The equation of continuity is satisfied by the stream function )y,x(  defined by 

.
x

v,
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Following Rosseland approximation, the radiative heat flux is  
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where
*

  is the Stefan-Boltzman constant and 
*

k  is the mean absorption coefficient.  Further, we assume that 

the temperature difference within the flow is such that 
4

T is expressed as a linear function of temperature. 

Hence, expanding 
4

T  in Taylor series about  and neglecting higher order terms, we obtain 

,34 434

  TTTT   

Now, we introduce the following similarity transformations to convert the partial differential equations into 

ordinary differential equations: 
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where 
 

is the similarity variable, f  is the dimensionless stream function, )(  is a dimensionless 

temperature of the fluid in the boundary layer region. 

Substituting Equation (5) in Equations (2) to (4), we obtain 
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where 
L

wUk
k

0
1  is the dimensionless viscoelastic parameter, 

0

2
02

U

LB
M




 is the magnetic parameter, 

k
*

k

T
*

R

3
4 




is the radiation parameter, 
k

pC
Pr


  is the Prandtl number,

b

c
St  is the stratification 

parameter. 0St  implies a stably stratified environment, while 0St  corresponds to an unstratified 

environment. 

The transformed boundary conditions are 
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III. HAM  

In this section, we employ HAM to solve the equations (6) and (7) subject to the boundary conditions (8). We 

choose the initial guesses 
0f

 and 
0 of  f  and   in the following form 
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The linear operators are selected as 
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which have the following properties 
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where  54321 CandC,C,C,C  are the arbitrary constants. 

If ],[p 10  denotes the embedding parameter and 2and1   are the non-zero auxiliary parameters then we 

construct the following zeroth-order deformation equations 

         ,;110;11 pfNpfpfLp                                        (9) 

           ,;;220;21 p,pfNppLp                                   (10) 

subject to the boundary conditions 

     
    .pp

p'fp'fpf
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                  (11) 

Based on equations (6) and (7), we define the nonlinear operators 2and1 NN  as 
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When 0p
 
and 1p , we obtain 
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Thus, as p  increases from 0 to 1 then    p;p;f  and  vary from initial approximations to the exact 

solutions of the original nonlinear differential equations. 

Now, expanding    p;p;f  and  in Taylor’s series w.r.to p , we have 
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      If the initial approximations, auxiliary linear operators and non-zero auxiliary parameters are chosen in such a 

way that the series (15) to (16) are convergent at ,1p
 
then 
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Differentiating Equations (9) and (10) m  times w.r.to p  , setting ,0p  and finally dividing with !m , we 

get the mth-order deformation equations as follows 
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with the following boundary conditions  
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If we let )(and)(),( ***  mmmf  as the special solutions of mth order deformation equations, then the 

general solution is given by 
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where the integral constants  )(iiC 5to1
 
are determined using the boundary conditions. 

It is easy to solve the above linear homogeneous equations using MATHEMATICA one after other in the 

order ,,m 21 . 
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IV. CONVERGENCE OF HAM 

The convergence region and rate of approximation of series solutions obtained using HAM are mainly 

dependent on the non-zero auxiliary parameters 1  
and 2 .  In order to find the appropriate values of 1  

and 

2 ,  -curves are plotted in Fig. 1. From the figure, it is clear that the valid regions of 1  
and 2 are about    

[-1.0, 0.0]. Our computations indicate that the series converge in the whole region of 
 
when .81.021 

 

The convergence of homotopy solution for different orders of approximations is given in Table 1. 
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Fig. 1:  -curves of )(')(''f 0and0  for 20
th

 order approximation when        

           ..St.Pr.R.M.k 80,710,50,50,101   

Table 1. Convergence of HAM solution for different orders of approximations when 

                        ..St.Pr.R.M.k 80,710,50,50,101 
 

Order )(''f 0  )(' 0
 

5 1.582727 0.299898 

10 1.579617 0.299205 

15 1.580412 0.299847 

20 1.580186 0.300006 

25 1.580261 0.300163 

30 1.580234 0.300202 

35 1.580244 0.300210 

40 1.580244 0.300212 

45 1.580244 0.300212 
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V. RESULTS AND DISCUSSION 

To ensure the accuracy of the applied method, the values of heat transfer rate )(' 0 are compared with the 

available results in the literature and are presented in Table 2.  

Table 2. Comparison of )(' 0  for different values of PrRM ,,
 
when ..Stk 001   

M  R  Pr  Bidin and 

Nazar [11] 

HAM 

0.0 0.0 1.0 0.9547 0.954783 

0.0 0.0 2.0 1.4714 1.471460 

0.0 0.0 3.0 1.8691 1.869067 

0.0 1.0 1.0 0.5315 0.531503 

1.0 0.0 1.0 0.8611 0.861427 

 

In the present study, the following default parameter values are adopted for computations:  

..St.Pr.R.M.k 20,710,50,50,101   
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Fig. 2.  Velocity  'f  for different values of 1k .   

The effect of viscoelastic parameter 1k
 
on velocity and temperature is shown in Figs. 2 and 3. As shown in the 

figures velocity is decreasing while temperature is increasing with the increase of 1k . This is due to the tensile 

stress introduced by viscoelasticity which causes transverse contraction of the boundary layer. 

Figs. 4 and 5 illustrate the influence of magnetic parameter M
 
on velocity and temperature profiles.  As M  

increases, the Lorentz force which has the tendency to slow down the motion of the fluid also increases. Hence, 

the velocity of the fluid decreases whereas temperature increases.  
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Fig. 3. Temperature  
 
for different values of 1k . 
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Fig. 4. Horizontal velocity  'f  for different values of M .      

Fig. 6 is the graphical representation of temperature profiles   for several values of stratification parameter 

St . It is found that the temperature decreases as the stratification parameter St  increases.  

The temperature gradient increases considerably with an increase in stratification parameter St  as shown in the   

Fig. 7. 

In case of higher Prandtl values the diffusion of heat away from the heated surface is very slow when compared 

to the smaller Prandtl values. Hence temperature decreases with the increase of Prandtl number Pr  as shown in 

the   Fig. 8. 

The effect of radiation parameter R  on temperature is displayed in Fig. 9. It is noticed that the temperature 

increases with the increase of R . This is due to the fact that the thermal boundary layer thickness increases with 

the increase of radiation parameter. 
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Fig. 5. Temperature  
 
for different values of M . 
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Fig. 6. Temperature  
 
for different values of St . 
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Fig. 7. Temperature gradient  '  for different values of St . 
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Fig. 8. Temperature  
 
for different values of Pr . 
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Fig. 9. Temperature  
 
for different values of R . 

VI. CONCLUSIONS 

In the present analysis MHD boundary layer flow and heat transfer towards an exponentially stretching sheet 

embedded in a thermally stratified medium subject to radiation are described. The effect of magnetic parameter 

on a viscoelastic incompressible fluid is to suppress the velocity field which in turn causes the enhancement of 

the skin-friction coefficient. Rate of transport is reduced with the increasing magnetic field. The temperature 

decreases with increasing values of the stratification parameter. 
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