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ABSTRACT

MHD boundary layer flow and heat transfer of a viscoelastic fluid over an exponentially stretching sheet
embedded in a thermally stratified medium subject to radiation are examined. Using similarity transformation
the governing boundary layer non-linear partial differential equations are converted into non-linear ordinary
differential equations. Homotopy analysis method (HAM) is applied to get series solution of obtained
equaations. The convergence of the obtained series solution is discussed explicitly. It is found that the heat
transfer rate at the surface increases in presence of thermal stratification. Fluid velocity decreases with
increasing magnetic parameter. Temperature gradient increases considerably with increase of stratification

parameter.
Keywords: Exponentially stretching sheet, HAM, MHD flow, thermally stratified medium.

I. INTRODUCTION

In recent years, the study of non-Newtonian fluids has achieved a lot success due to their practical applications
in various fields like manufacturing of foods and papers, manufacturing of plastic sheets, etc. The study of
boundary layer flow over a continuous solid surface moving with a constant speed was first studied by Sakiadis
[1] in 1961. Later Crane [2] extended this problem to a stretching sheet whose surface velocity varies linearly
with a certain distance from a fixed point. Chang [3] derived a closed form solution of the non-Newtonian flow
problem of Rajgoplal et al. [4]. Char [5] discussed the effects of magnetic field and power law surface
temperature on heat and mass transfer from a continuous flat surface. Heat and mass transfer characteristics in
the presence of transverse magnetic field were obtained by Abel et al. [6]. In heat transfer process thermal
radiation also place a vital role. Rapits [7], Abel and Gousia [8] analysed the viscoelastic fluid flow and heat
transfer in the presence of thermal radiation under various physical conditions. Most of the researchers
concentrated on the flow analysis caused by stretching the sheet linearly. Magyari and Keller [9] focused on
heat and mass transfer on boundary layer flow due to an exponentially continuous stretching sheet. Elbashbeshy

[10] examined the flow and heat transfer characteristics over an exponentially stretching continuous surface
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with suction. Bidin and Nazar [11] presented the numerical solutions for the problem of boundary layer flow
over an exponentially stretching sheet in the presence of radiation. The flow due to a heated surface immersed in
a stable stratified viscous fluid has been investigated experimentally and analytically by Yang et al. [12].
Recently, Mukhopadhyay [13] analysed the MHD boundary layer flow and heat transfer towards an
exponentially stretching sheet embedded in a thermally stratified medium by taking suction into account.

Hence, the aim of the present work is to study the characteristics of MHD boundary layer flow and heat transfer
of a viscoelastic fluid over an exponentially stretching sheet embedded in a thermally stratified medium in the
presence of radiation using HAM [14].

1. MATHEMATICAL FORMULATION
Consider the flow of an incompressible viscoelastic electrically conducting fluid past a flat heated sheet

coinciding with the plane y = 0 and the flow being confined to y > 0. The flow is generated due to stretching
the sheet exponentially by the application of two equal and opposite forces along the X -axis. So that the sheet is
stretched keeping the origin fixed. A variable magnetic field of strength B is applied in the direction to normal
the plate. The sheet is of temperature TW(x) and is embedded in a thermally stratified medium of variable

X x
temperature To.(x) where Ty (x)>Too(x). It is assumed thatTy,(x)= To +be 2L T (x)=T,+ce®

where T0 is the reference temperature, b > 0,c > 0 are constants.

The equations of continuity, momentum, energy and concentration for the flow of viscoelastic fluid are
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where u and v are the velocity components in x and y directions, v is the kinematic viscosity, kO is the

elastic parameter, p is the fluid density, o is the electrical conductivity of the fluid, T is the temperature in
the boundary layer, k is the thermal conductivity, ¢ is the radiative heat flux.

The boundary conditions are

X
u=Uy =Ugeb, v=0 T=T,, aty=0 @)
u—0 T 5Ty as y — oo.

Here, the subscripts w,co refer to the surface and ambient conditions, respectively. U,, is the stretching
velocity, Uy is the reference velocity, L is the reference length.
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It is assumed that the variable magnetic field B(x) is of the form:

B(x) =By (x)eﬁ ,

where Bo is the constant magnetic field.

The equation of continuity is satisfied by the stream function w(x,y) defined by

Following Rosseland approximation, the radiative heat flux is

*
4o o1
Oy = ——5——,

3K oy
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* *
where o is the Stefan-Boltzman constant and k is the mean absorption coefficient. Further, we assume that

the temperature difference within the flow is such that T4is expressed as a linear function of temperature.

Hence, expanding T *in Taylor series about T and neglecting higher order terms, we obtain

T*=4T°T 3T},

Now, we introduce the following similarity transformations to convert the partial differential equations into

ordinary differential equations:

X X X
X TS X
u=Uget f'(n) n=y ﬁeﬂ, w(xy)=y21uUq f(y)e?L,
X
_ vUq oL ¢ .y 0 _ T-Ty
v oL e2L(t(n)+nt'(n)). o) S—

where 7 is the similarity variable, f is the dimensionless stream function,

temperature of the fluid in the boundary layer region.

Substituting Equation (5) in Equations (2) to (4), we obtain

2

1 3...2
2f' T —ff =1k | 3 T —— T =M
2 2

4
(1+—RJ¢9"+Pr(f 6'—f'0)-Pr stf'=0,
3

®)

6(n) is a dimensionless

(6)

™
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where ki = is the dimensionless viscoelastic parameter, M = ——— s the magnetic parameter,
Lv pUO
* 3
40 T vpC c
R = # is the radiation parameter, Pr = P is the Prandtl number, St :Eis the stratification
k k

parameter. St >0 implies a stably stratified environment, while St =0 corresponds to an unstratified

environment.

The transformed boundary conditions are
8

IHl. HAM

In this section, we employ HAM to solve the equations (6) and (7) subject to the boundary conditions (8). We

choose the initial guesses f and ¢ of f and @ in the following form

fo(ﬂ):l_e_?7 ,
The linear operators are selected as

Ll(f): flll_fl,

L,(6)=6"-0,
which have the following properties

n ) _
Ll(C1 +Cye’ +Cge )— 0,
n ) _

L2(04e +Cge )— 0,

where C;,C,,C45,C, and Cg are the arbitrary constants.

If pe[0,1] denotes the embedding parameter and hl and % o are the non-zero auxiliary parameters then we

construct the following zeroth-order deformation equations

(- p)y (1 ()= f ()= g Ny [ (i p)], (©)

(- p)LZ(H(’?? p)—‘go(ﬂ))= P7iy Nz[f(ﬂi p).6(7; p)], (10)
subject to the boundary conditions

a(cfx(:)@f, o rlen)- f'(:(;oz)p:) "o (11)

Based on equations (6) and (7), we define the nonlinear operators N7 and N as
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N, [f (i p). 00 p)]=(1+—Rj@+Pr[f(ﬂ; p) 2D Aip) ., p)]
3 on on on (13)
—Prst (—af (n p)j,
on
When p=0 and p =1, we obtain
t(7:0)= fo(n) t(7:1) = ()
0(7:0) =0 (n) o(:1) = 0(n) (14)

Thus, as P increases from 0 to 1 then f(;y; p) and 9(77; p) vary from initial approximations to the exact

solutions of the original nonlinear differential equations.

Now, expanding f(n; p) and 9(77; p) in Taylor’s series w.r.to P, we have

f(n;p)= fo(ﬂ)+m§;1fm(n)pm, (15)
o(n; p) = Ho(n)+m§; Om(n)p™, (16)
where
1 0™ (n;
tlo)- 2 O 1e)
m!  op p=0 an
1 6m9(;7; p)
9m(77) _I m :
m op p=0

If the initial approximations, auxiliary linear operators and non-zero auxiliary parameters are chosen in such a

way that the series (15) to (16) are convergentat p =1, then

t(r)=fo(n)+ = fm(n) (18)
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(7). (19)

Differentiating Equations (9) and (10) m times w.r.to p , setting p =0, and finally dividing with m!, we

get the mth-order deformation equations as follows
f
I-1(fm (7)- m fm_l(ﬂ))= 1 Rm (n), (20)

Ly (0m (7) = 2 Oy_4 (7)) = 15 R (), (21)

with the following boundary conditions

fm(0)=0,  f(0)=0, fy(x)=0 22
0m(0)=0, Om (=) =0,
where
f m-1 . vom-1 "
Rm (77): fnoa — ZiEO fne-ifi + igo fn—1-i i
(23)
m-1 . w1 mel v gmel " -
—k1(3i§0 fna-ifi =5 manifi =5 % Tmasifi )—M fm-1
0 4\ " m-1 om=1 '
R (7) = 1+§ O + P EO foo 16 - EO foo g6 |-Prstf 4. (24)
0, m<l,
*m = {1 m>1 (25)

If we let T (77), @ () and @, (17) as the special solutions of mth order deformation equations, then the

general solution is given by

> n -1

) 2r s (26)

where the integral constants C;j (i =1 to 5) are determined using the boundary conditions.

It is easy to solve the above linear homogeneous equations using MATHEMATICA one after other in the

order m=1,2,....
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The convergence region and rate of approximation of series solutions obtained using HAM are mainly

dependent on the non-zero auxiliary parameters 7, and 7, . In order to find the appropriate values of 7, and

ho, h-curves are plotted in Fig. 1. From the figure, it is clear that the valid regions of 7, and 7, are about

[-1.0, 0.0]. Our computations indicate that the series converge in the whole region of » when 7, =%, = -0.81.

The convergence of homotopy solution for different orders of approximations is given in Table 1.

157

[ERN
o

f7(0), 67(0)

..........

.....................................

-05 0 0.5
h,h,

Fig. 1: 72-curves of f''(0) and @' (0) for 20" order approximation when

ki =0.L,M =05R=05,Pr =0.71,St = 0.8.

Table 1. Convergence of HAM solution for different orders of approximations when

k; =01, M =05R=0.5,Pr=0.71,St = 0.8.

Order | — f''(0) | —€'(0)
5 1.582727 | 0.299898
10 1.579617 | 0.299205
15 1.580412 | 0.299847
20 1.580186 | 0.300006
25 1.580261 | 0.300163
30 1.580234 | 0.300202
35 1.580244 | 0.300210
40 1.580244 | 0.300212
45 1.580244 | 0.300212
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V. RESULTS AND DISCUSSION

To ensure the accuracy of the applied method, the values of heat transfer rate — &' (0) are compared with the

available results in the literature and are presented in Table 2.

Table 2. Comparison of — & (0) for different values of M, R, Pr when kq = St =0.0.

M R Pr Bidin and | HAM
Nazar [11]

0.0 0.0 1.0 0.9547 0.954783

0.0 0.0 2.0 14714 1.471460

0.0 0.0 3.0 1.8691 1.869067

0.0 1.0 1.0 0.5315 0.531503

1.0 0.0 1.0 0.8611 0.861427

In the present study, the following default parameter values are adopted for computations:

k;, =0L,M =05R=05Pr=0715t=0.2

_k1:00

........... k =0.2 ]

______ k =04
4 6 8 10

Fig. 2. Velocity f'(r]) for different values of k; .

The effect of viscoelastic parameter k; on velocity and temperature is shown in Figs. 2 and 3. As shown in the

figures velocity is decreasing while temperature is increasing with the increase of k; . This is due to the tensile

stress introduced by viscoelasticity which causes transverse contraction of the boundary layer.

Figs. 4 and 5 illustrate the influence of magnetic parameter M on velocity and temperature profiles. As M

increases, the Lorentz force which has the tendency to slow down the motion of the fluid also increases. Hence,

the velocity of the fluid decreases whereas temperature increases.
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Fig. 3. Temperature 9(77) for different values of k; .
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Fig. 4. Horizontal velocity f'(n) for different values of M .
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Fig. 6 is the graphical representation of temperature profiles 6’(77)f0r several values of stratification parameter

St. It is found that the temperature decreases as the stratification parameter St increases.

The temperature gradient increases considerably with an increase in stratification parameter St as shown in the

Fig. 7.

In case of higher Prandtl values the diffusion of heat away from the heated surface is very slow when compared

to the smaller Prandtl values. Hence temperature decreases with the increase of Prandtl number Pr as shown in

the Fig. 8.

The effect of radiation parameter R on temperature is displayed in Fig. 9. It is noticed that the temperature

increases with the increase of R . This is due to the fact that the thermal boundary layer thickness increases with
the increase of radiation parameter.
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Fig. 7. Temperature gradient & (n) for different values of St.
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Fig. 8. Temperature 9(77) for different values of Pr
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Fig. 9. Temperature 6’(77) for different values of R .

VI. CONCLUSIONS

In the present analysis MHD boundary layer flow and heat transfer towards an exponentially stretching sheet
embedded in a thermally stratified medium subject to radiation are described. The effect of magnetic parameter
on a viscoelastic incompressible fluid is to suppress the velocity field which in turn causes the enhancement of
the skin-friction coefficient. Rate of transport is reduced with the increasing magnetic field. The temperature

decreases with increasing values of the stratification parameter.
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