Vol. No. 5, Issue No. 07, July 2016 www.ijarse.com

COMMON FIXED POINT THEOREMS IN INTUITIONISTIC FUZZY METRIC SPACE

V.H Badshah¹, Suman Jain² and Nitin Jauhari³

¹School of Studies in Mathematics, Vikram University, Ujjain (M.P)

²Department of Mathematics, Govt. College, Kalapipal (M.P)

³Department of Applied Mathematics, Alpine Institute of Technology, Ujjain (M.P)

ABSTRACT

In this paper, we prove common fixed point theorems for Semi compatible and Sub-sequentially continuous maps in intuitionistic fuzzy metric spaces. Our result is generalized the recent result of Chouhan and Kumar [4].

Keywords: Intuitionistic Fuzzy Metric Spaces, Sub-Sequentially Continuous Mappings, Semi-Compatible.

I INTRODUCTION

In 1986, Atanassov [2] introduced and studied the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets which is introduced by Zadeh [14]. In 2004, Park [10] defined the concept of intuitionistic fuzzy metric space with the help of continuous t-norms and continuous t-conorms. Recently, in 2006, Alaca [1] using the notion of intuitionistic fuzzy sets and defined the concept of intuitionistic fuzzy metric space with the help of continuous t-norms and continuous t-conorms as a generalization of fuzzy metric space which is introduced by Kramosil and Michalek [8]. Turkoglu [13] gave generalization of Jungck's [7] common fixed point theorem in intuitionistic fuzzy metric spaces.

Coker [5] introduced the concept of intuitionistic fuzzy topological spaces. Alaca et al. [1] proved the well-known fixed point theorems of Banach [3] in the setting of intuitionistic fuzzy metric spaces. Later on,

Turkoglu et al. [13] proved Jungck's [7] common fixed point theorem in the setting of intuitionistic fuzzy metric space. Turkoglu et al. [7] further formulated the notions of weakly commuting and R-weakly commuting mappings in intuitionistic fuzzy metric spaces and proved the intuitionistic fuzzy version of Pant's theorem [9]. Gregori et al. [6], Saadati and Park [11] studied the concept of intuitionistic fuzzy metric space and its applications.

II PRELIMINARIES

Definition 2.1 [12] A binary operation $*: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is continuous t-norm if * satisfies the following conditions:

(i) * is commutative and associative

Vol. No. 5, Issue No. 07, July 2016

www.ijarse.com

- (ii) * is continuous;
- (iii) $a * 1 = a \text{ for all } a \in [0, 1];$
- (iv) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for all $a, b, c, d \in [0, 1]$.

Examples of t-norm are $a * b = min\{a,b\}$ and a * b = ab.

Definition 2.2.[12] A binary operation \Diamond : $[0, 1] \times [0, 1] \to [0, 1]$ is continuous t-conorm if \Diamond satisfies the following conditions:

- (i) ◊ is commutative and associative;
- (ii) ◊ is continuous;
- (iii) $a \lozenge 0 = a$ for all $a \in [0, 1]$;
- (iv) a \Diamond b \leq c \Diamond d whenever a \leq c and b \leq d for all a, b, c, d \in [0, 1].

Examples of t-norm are $a \lor b = min\{a,b\}$ and $a \lor b = ab$.

Definition 2.3. [8] A 5-tuple $(X, M, N, *, \diamond)$ is said to be an intuitionistic

fuzzy metric space if X is an arbitrary set, * is a continuous t-norm, \Diamond is a continuous t-co-norm and M,N are fuzzy sets on $X^2 \times [0,\infty)$ satisfying following conditions:

- (i) $M(x, y, t) + N(x, y, t) \le 1$ for all $x, y \in X$ and t > 0;
- (ii) M(x, y, 0) = 0 for all $x, y \in X$;
- (iii) M(x, y, t) = 1 for all $x, y \in X$ and t > 0 if and only if x = y;
- (iv) M(x, y, t) = M(y, x, t) for all $x, y \in X$ and t > 0;
- (v) $M(x, y, t) *M(y, z, s) \le M(x, z, t + s)$ for all $x, y, z \in X$ and s, t > 0;
- (vi) for all $x, y \in X$, $M(x, y, \cdot) : [0, \infty) \rightarrow [0, 1]$ is left continuous;
- (vii) $\lim_{n\to\infty} M(x, y, t) = 1$ for all $x, y \in X$ and t > 0;
- (viii) N(x, y, 0) = 1 for all $x, y \in X$;
- (ix) N(x, y, t) = 0 for all $x, y \in X$ and t > 0 if and only if x = y;
- (x) N(x, y, t) = N(y, x, t) for all $x, y \in X$ and t > 0;
- (xi) $N(x, y, t) \lozenge N(y, z, s) \ge N(x, z, t + s)$ for all $x, y, z \in X$ and s, t > 0;
- (xii) for all $x, y \in X$, $N(x, y, \cdot) : [0, \infty) \to [0, 1]$ is right continuous;
- (xiii) $\lim_{n\to\infty} N(x, y, t) = 0$ for all $x, y \in X$.

The functions M(x,y,t) and N(x,y,t) denote the degree of nearness and the degree of non-nearness between x and y with respect to t respectively.

Remark 2.4.In intuitionistic fuzzy metric space $M(x,y,^*)$ is non decreasing and $N(x,y,^*)$ is non increasing for all $x,y \in X$.

Definition 2.6.[2] Let $(X,M,N,*,\diamond)$ be an intuitionistic fuzzy metric space. Then a sequence $\{x_n\}$ in X is said to be

Vol. No. 5, Issue No. 07, July 2016 www.ijarse.com

(i) Convergent to a point $x \in X$ if

$$\lim_{n\to\infty} M(x_n, x, t) = 1$$
 and $\lim_{n\to\infty} N(x_n, x, t) = 0$ for all $t > 0$,

(ii) Cauchy sequence if

$$\lim_{n\to\infty} M(x_{n+p}, x_n, t) = 1$$
 and $\lim_{n\to\infty} N(x_{n+p}, x_n, t) = 0$ for all $t > 0$ and $p > 0$.

Definition 2.7.[2] An intuitionistic fuzzy metric space $(X,M,N,*, \diamond)$ is said to be complete if and only if every Cauchy sequence in X is convergent.

Definition 2.8.[7] Let A and S be self-mappings of an intuitionistic fuzzy metric space $(X,M,N,*,\diamond)$ Then a pair (A,S) is said to be commuting if M(ASx,SAx,t)=1 and N(ASx,SAx,t)=0.

Definition 2.5 [13] A pair of self-mappings (f, g) of an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ is said to be compatible if

 $lim_{n\to\infty}\,M(fgx_n,\,gfx_n,\,t)=1$ and $lim_{n\to\infty}N\;(fgx_n,\,gfx_n,\,t)=0$ for every

t > 0, whenever $\{x_n\}$ is a sequence in X such that

 $\lim_{n\to\infty}fx_n=\lim_{n\to\infty}gx_n=z \text{ for some }z\in X.$

Definition 2.10.[13] Let A and S be self-mappings of an intuitionistic fuzzy metric space $(X,M,N,*, \diamond)$. Then a pair (A,S) is said to be Sub-compatible if $\lim_{n\to\infty} M(ASx_n,SAx_n,t)=1$ and

$$\lim_{n\to\infty} N(ASx_n, SAx_n, t) = 0$$
 for all $t > 0$,

whenever $\{x_n\}$ is a sequence in X such that

 $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = u \text{ for some } u \in X.$

Lemma 2.13. [4] Let $\{u_n\}$ is a sequence in an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$. If there exists a constant $k \in (0, 1)$ such that

$$M(u_n,\,u_{n+1},\,kt)\geq M(u_{n-1},\,u_n,\,t) \text{ and } N(u_n,\,u_{n+1},\,kt)\leq N(u_{n-1},\,u_n,\,t)$$

for n = 1, 2, 3, ..., then $\{u_n\}$ is a Cauchy sequence in X.

Lemma 2.14. [4] Let (X, M, N,*, ◊).be an intuitionistic fuzzy metric

space. If there exists a constant $k \in (0, 1)$ such that

 $M(x, y, kt) \ge M(x, y, t)$ and $N(x, y, kt) \le N(x, y, t)$

for all $x, y \in X$ and t > 0, then x = y.

III MAIN RESULT

Theorem 2.1. Let L, A, B, P, Q and R be self mappings of intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ with continuous t-norm and continuous t-co-norm \diamond defined by t*t≥t and $(1-t)\diamond(1-t)\leq(1-t)$ for all a,b∈[0,1].If the pairs (L,QR) and (A, BP) are semi-compatible and sub-sequentially continuous mappings, then

Vol. No. 5, Issue No. 07, July 2016

www.ijarse.com

IJARSE ISSN 2319 - 8354

- (a) The pair (L, QR) has a coincidence point.
- (b) The pair (A, BP) has a coincidence point.
- (c) Further, the mapping L, A, B, P, Q and R have a unique common fixed point in X provided the involved maps satisfy the inequality

$$M^2(Lx,Ay,t)*[M(QRx,Lx,t)*M(BPy,Ay,t)]$$

$$\geq [pM(QRx,Lx,t)+qM(QRx,BPy,t)]M(QRx,Ay,t)$$

and

 $N^2(Lx,Ay,t)$ $\langle N(QRx,Lx,t) \rangle N(BPy,Ay,t)$

$$\leq [pN(QRx,Lx,t)+qN(QRx,BPy,t)]N(QRx,Ay,t)$$
 (1.1)

for all $x, y \in X$ and t > 0, where 0 < p, q < 1 and p+q=1.

Proof:- The pairs (L,QR) and (A,BP) are Semi-compatible and Sub-sequentially continuous mappings, there exists a sequence $\{x_n\}$ in X such that

$$\lim_{n\to\infty} Lx_n = \lim_{n\to\infty} QRx_n = z$$
 for some $z \in X$

and
$$\lim_{n\to\infty} M(L(QR)x_n, (QR)Lx_n, t) = 1$$
, for all $t < 0$.

and
$$\lim_{n\to\infty} M(Lz,QRz,t)=1$$
 (1.2)

then we have Lz=QRz,

Similarly

$$\lim_{n\to\infty} Ay_n = \lim_{n\to\infty} BPy_n = w \in X$$

$$\lim_{n\to\infty} M(A(BP)y_n, (BP)Ay_n, t) = 1$$
, for all $t < 0$

and
$$\lim_{n\to\infty} M(Aw,BPw,t)=1$$
 (1.3)

Hence z is coincidence point of L, QR and w is coincidence point of A, BP, then we get

$$Lz=QRz.$$
 (1.4)

$$Aw=BPw. (1.5)$$

Step 1:- First we prove that z = w. Putting $x = x_n$, $y = y_n$ in inequality (1.1) we have

$$M^{2}(Lx_{n},Ay_{n},t)*[M(QRx_{n},Lx_{n},t).M(BPy_{n},Ay_{n},t)] \geq [pM(QRx_{n},Lx_{n},t)+qM(QRx_{n},BPy_{n},t)]M(QRx_{n},Ay_{n},t)$$

and

$$N^2(Lx_n,Ay_n,t) \lozenge \lceil N(QRx_n,Lx_n,t) \lozenge N(BPy_n,Ay_n,t) \rceil \leq \lceil pN(QRx_n,Lx_n,t) + qN(QRx_n,BPy_n,t) \rceil N(QRx_n,Ay_n,t) \lozenge \lceil N(QRx_n,Lx_n,t) \lozenge N(BPy_n,Ay_n,t) \rceil \leq \lceil pN(QRx_n,Lx_n,t) \lozenge N(QRx_n,Lx_n,t) \lozenge \lceil N(QRx_n,Lx_n,t) \lozenge N(BPy_n,Ay_n,t) \rceil \leq \lceil pN(QRx_n,Lx_n,t) \lozenge N(QRx_n,Lx_n,t) \lozenge \lceil N(QRx_n,Lx_n,t) \lozenge N(BPy_n,Ay_n,t) \rceil \leq \lceil pN(QRx_n,Lx_n,t) \lozenge N(QRx_n,Lx_n,t) \lozenge N(BPy_n,Ay_n,t) \rceil \leq \lceil pN(QRx_n,Lx_n,t) \rceil$$

Now

$$M^{2}(z,w,t)*[M(z,z,t).M(w,w,t)] \ge pM[(z,z,t)+qM(z,w,t)]M(z,w,t)$$

and

$$N^{2}(z,w,t)\Diamond[N(z,z,t)\Diamond N(w,w,t)] \leq pN[(z,z,t)+qN(z,w,t)]N(z,w,t)$$

$$M^2(z,w,t) \ge [p+qM(z,w,t)]M(z,w,t)$$

and

$$N^2(z,w,t) \le [p+qN(z,w,t)]N(z,w,t)$$

$$M(z,w,t) \ge \frac{p}{1-q}$$
 and

$$N(z,w,t) \le \frac{p}{1-q}$$

Vol. No. 5, Issue No. 07, July 2016

www.ijarse.com

IJARSE ISSN 2319 - 8354

```
M(z,w,t)=1 and N(z,w,t)=0.
                                                                                                                   (1.7)
    Thus we have z = w
Step 2:- Now we prove that Lz = z, Putting x=z and y=y_n in (1.1)
   M^{2}(Lz,Ay_{n},t)*[M(QRz,Lz,t).M(BPy_{n},Ay_{n},t)] \geq [pM(QRz,Lz,t)+qM(QRz,BPy_{n},t)]M(QRz,Ay_{n},t)
 and
  N^2(Lz,Ay_n,t) \Diamond [N(QRz,Lz,t) \Diamond N(BPy_n,Ay_n,t)] \leq [pN(QRz,Lz,t) + qN(QRz,BPy_n,t)]N(QRz,Ay_n,t) \Diamond [N(QRz,Lz,t) \Diamond N(BPy_n,Ay_n,t)] 
    M^2(Lz,w,t)*[M(QRz,Lz,t).M(w,w,t)] \ge [pM(QRz,Lz,t)+qM(QRz,w,t)]M(QRz,w,t)
and
       N^{2}(Lz,w,t) \diamond [N(QRz,Lz,t) \diamond N(w,w,t)] \leq [pN(QRz,Lz,t) + qM(QRz,w,t)]N(QRz,w,t)
      M^2(Lz,w,t)*[M(Lz,Lz,t).M(w,w,t)] \ge [pM(Lz,Lz,t)+qM(Lz,w,t)]M(Lz,w,t)
and
      N^{2}(Lz,w,t) \Diamond [N(Lz,Lz,t) \Diamond N(w,w,t)] \leq [pN(Lz,Lz,t) + qN(Lz,w,t)]N(Lz,w,t)
       M^2(Lz,w,t) \ge [p+qM(Lz,w,t)]M(Lz,w,t)
and
      N^2(Lz,w,t) \le [p+qN(Lz,w,t)]N(Lz,w,t)
      M(Lz,w,t) \ge \frac{p}{1-q} and N(Lz,w,t) \le \frac{p}{1-q}
     M(Lz,w,t) = 1 and N(Lz,w,t) = 0
Hence Lz = w = z.
Step 3:-Again we prove that Bz = z
   Then we have x = x_n, y = z in (1.1)
     M^2(Lx_n,Az,t)*[M(QRx_n,Lx_n,t)M(BPz,Az,t)] \ge [pM(QRx_n,Lx_n,t)+qM(QRx_n,BPz,t)] M(QRx_n,Az,t)
and
   N^2(Lx_n,Az,t) \Diamond \left[ N(QRx_n,Lx_n,t) \Diamond N(BPz,Az,t) \right] \leq \left[ pN(QRx_n,Lx_n,t) + qN(QRx_n,BPz,t) \right] N(QRx_n,Az,t)
  M^{2}(z,Az,t)*[M(Az,Az,t).M(z,z,t)] \ge [pM(Az,Az,t)+qM(z,Az,t)]M(z,Az,t)
and
          N^{2}(z,Az,t) \lozenge [N(Az,Az,t) \lozenge N(z,z,t)] \leq [pN(Az,Az,t)+qN(z,Az,t)]N(z,Az,t)
     M^2(z,Az,t) \ge [p+qM(z,Az,t)] M(z,Az,t)
and
      N^{2}(z,Az,t) \leq [p+qN(z,Az,t)] N(z,Az,t)
     M(z,Az,t) \ge \frac{p}{1-q} and N(z,Az,t) \le \frac{p}{1-q}
      M(z,Az,t) = 1 and N(z,Az,t) = 0
   we get z=Az
                                                                                                                  (1.8)
Step4:-Again we claim that Pz=z,
     putting x=Pz and y=z in (1.1)
   M^2(LPz,Az,t)*[M(QR(Pz),Lz,t).M(BPz,Az,t)] \ge [pM(QR(Pz),Lz,t)+qM(QR(Pz),BPz,t)]M(QR(Pz),Az,t)
```

Vol. No. 5, Issue No. 07, July 2016

www.ijarse.com

JARSE ISSN 2319 - 8354

```
and
      N^2(LPz,Az,t) \lozenge \left[ N(QR(Pz),Lz,t) \lozenge N(BPz,Az,t) \right] \le \left[ pN(QR(Pz),Lz,t) + qN(QR(Pz),BPz,t) \right] N(QR(Pz),Az,t)
      M^2(LPz,z,t)*[M(QR(Pz),Lz,t).M(BPz,Az,t)] \ge [pMQz,ATz,t)+qM(TPQz,Bz,t)]M(TPQz,Bz,t)
and
     N^2(LPz,z,t) \lozenge [N(QR(Pz),Lz,t) \lozenge N(BPz,Az,t)] \leq [pNQz,ATz,t) + qN(TPQz,Bz,t)] N(TPQz,Bz,t)
    M^{2}(Pz,z,t)*[M(Pz,Pz,t).M(z,z,t)] \geq [pM(Pz,Pz,t)+qM(Pz,z,t)] M(Pz,z,t)
     M^2(Pz,z,t) \ge [p+qM(Pz,z,t)] M(Pz,z,t)
     N^2(Pz,z,t) \diamond [p+qN(Pz,z,t)] N(Pz,z,t)
     M(Pz,z,t) \ge \frac{p}{1-q} and N(Pz,z,t) \le \frac{p}{1-q}
     M(Pz,z,t) = 1 and N(Pz,z,t) = 0
     we get Tz = z
                                                                                                                                                                                                                                               (1.9)
Step5:- Again we show that Bz = z,
    putting x=Bz and y=z in (1.1)
     M^{2}(LBz,Az,t)*[M(QRBz,Lz,t).M(BPz,Az,t)] \ge [pM(QRBz,LBz,t)+qM(QRBz,BPz,t)] M(QRBz,Az,t)
and
         N^2(LBz,Az,t)\langle N(QRBz,Lz,t)\langle N(BPz,Az,t)| \leq [pN(QRBz,LBz,t)+qN(QRBz,BPz,t)] N(QRBz,Az,t)
         M^{2}(Bz,z,t)*[M(Lz,Lz,t).M(z,z,t)] \ge [pM(Lz,Lz,t)+qM(Bz,z,t)] M(Bz,z,t)
and
          N^{2}(Bz,z,t) \lozenge [N(Lz,Lz,t) \lozenge N(z,z,t)] \le [pN(Lz,Lz,t) + qN(Bz,z,t)] N(Bz,z,t)
          M^2(Bz,z,t) \ge [p+qM(Bz,z,t)] M(Bz,z,t)
and
        N^{2}(Bz,z,t) \leq [p+qN(Bz,z,t)] N(Bz,z,t)
      M(Bz,z,t) \ge \frac{p}{1-q} and N(Bz,z,t) \le \frac{p}{1-q}
      M(Bz,z,t) = 1 and N(Bz,z,t) = 0
       We get Bz=z
                                                                                                                                                                                                     (1.10)
Step6:- Again we prove that Rz=z,
          putting x=Rz and y=z in (1.1)
M^{2}(LRz,z,t)*[M(QR(Rz),Lz,t).M(BP(Rz),Az,t)] \ge [pM(QR(Rz),L(Rz),t)+qM(QR(Rz),BPz,t)]M(QR(Rz),Az,t) + [pM(QR(Rz),Lz,t)+qM(QR(Rz),BPz,t)]M(QR(Rz),Az,t) + [pM(QR(Rz),Lz,t)+qM(QR(Rz),BPz,t)]M(QR(Rz),Az,t) + [pM(QR(Rz),Lz,t)+qM(QR(Rz),BPz,t)]M(QR(Rz),Az,t) + [pM(QR(Rz),Lz,t)+qM(QR(Rz),BPz,t)]M(QR(Rz),Az,t) + [pM(QR(Rz),Lz,t)+qM(QR(Rz),BPz,t)]M(QR(Rz),Az,t) + [pM(QR(Rz),Lz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)]M(QR(Rz),Az,t) + [pM(QR(Rz),Lz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(QR(Rz),BPz,t)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+qM(Rz)+q
and
N^{2}(LRz,z,t) \wedge [N(QR(Rz),Lz,t) \wedge N(BP(Rz),Az,t)] \leq [pN(QR(Rz),L(Rz),t)+qN(QR(Rz),BPz,t)]N(QR(Rz),Az,t)
                       M^{2}(Rz,z,t)*[M(Rz,Rz,t).M(Az,Az,t)] \ge [pM(Rz,Rz,t)+qM(Rz,z,t)] M(Rz,z,t)
and
                       N^{2}(Rz,z,t) \lozenge [N(Rz,Rz,t) \lozenge N(Az,Az,t)] \le [pN(Rz,Rz,t) + qN(Rz,z,t)]N(Rz,z,t)
                       M^2(Rz,z,t) \ge [p+qM(Rz,z,t)] M(Rz,z,t)
```

Vol. No. 5, Issue No. 07, July 2016

www.ijarse.com

IJARSE ISSN 2319 - 8354

and

$$N^2(Rz,z,t) \diamond [p+qN(Rz,z,t)] N(Rz,z,t)$$

$$M(Rz,z,t) \geq \frac{p}{1-q} \text{ and } N(Rz,z,t) \leq \frac{p}{1-q}$$

$$M(Rz,z,t) = 1$$
 and $N(Rz,z,t)=0$

Step7:- Again we prove that Qz=z, putting x=Qz and y=z in (1.1)

$$M^2(LQz,Az,t)*[M(QQz,Lz,t).M(BPz,Az,t)] \leq [pM(QRQz,Lz,t)+qM(QRQz,BPz,t)] M(QRQz,Az,t) + (pM(QRQz,Lz,t)+qM(QRQz,BPz,t)) M(QRQz,Az,t) + (pM(QRQz,BPz,t)+qM(QRQz,BPz,t)) M(QRQz,Az,t) + (pM(QRQz,BPz,t)+qM(QRQz,BPz,t)) M(QRQz,Az,t) + (pM(QRQz,BPz,t)+qM(QRQz,BPz,t)+qM(QRQz,BPz,t)) M(QRQz,Az,t) + (pM(QRQz,BPz,t)+qM(QRQz,BPz,t)+qM(QRQz,BPz,t)+qM(QRQz,BPz,t)+ (pM(QRQz,BPz,t)+qM(QRQz,BPz,t)+qM(QRQz,BPz,t)+ (pM(QRQz,BPz,t)+qM(QRQz,BPz,t)+qM(QRQz,BPz,t)+ (pM(QRQz,BPz,t)+qM(QRQz,BPz,t)+qM(QRQz,BPz,t)+ (pM(QRQz,BPz,t)+qM(QRQz,BPz,t)+ (pM(QRQz,BPz,t)+ (pM(QRQz,BPz,t)+qM(QRQz,BPz,t)+ (pM(QRQz,BPz,t)+ (pM(QRQz,BPz,t)+qM(QRQz,BPz,t)+ (pM(QRQz,BPz,t)+ (pM$$

(1.11)

and

$$N^2(LQz,Az,t) \Diamond \left[N(QQz,Lz,t).N(BPz,Az,t) \right] \leq \left[pN(QRQz,Lz,t) + qN(QRQz,BPz,t) \right] N(QRQz,Az,t)$$

$$M^{2}(Qz,z,t)*[M(Qz,Qz,t).M(z,z,t)] \ge [pM(Qz,Qz,t)+qM(Qz,z,t)] M(Qz,z,t)$$

and

$$N^{2}(Qz,z,t) \Diamond [N(Qz,Qz,t) \Diamond N(z,z,t)] \leq [pN(Qz,Qz,t) + qN(Qz,z,t)] N(Qz,z,t)$$

$$M^2(Qz,z,t) \ge [p+qM(Qz,z,t)] M(Qz,z,t)$$

and

$$N^{2}(Qz,z,t) \leq [p+qN(Qz,z,t)] N(Qz,z,t)$$

$$M(Qz,z,t) \ge \frac{p}{1-q}$$
 and $N(Qz,z,t) \le \frac{p}{1-q}$

$$M(Qz,z,t) = 1$$
 and $N(Qz,z,t)=0$

We get
$$Qz=z$$
 (1.12)

Hence z is a common fixed point of L, A, B, P,R and Q.

Uniqueness: - Let v be another common fixed point of L, A, B, P, R and Q. Suppose z≠v.

Putting x=z, y=v in (1.1)

$$M^2(Lz,Av,t)*[M(QRz,Lz,t).M(BPv,Av,t)] \ge [pM(QRz,Lz,t)+qM(QRz,BPv,t)]M(QRz,Av,t)$$

and

$$N^2(Lz,Av,t) \Diamond [N(QRz,Lz,t).N(BPv,Av,t)] \leq [pN(QRz,Lz,t) + qN(QRz,BPv,t)]N(QRz,Av,t)$$

$$M^2(Lz,Av,t)*[M(Lz,Lz,t).M(Av,Av,t)] \ge [pM(Lz,Lz,t)+qM(Lz,Av,t)]M(Lz,Av,t)$$

and

$$N^{2}(Lz,Av,t)\Diamond[N(Lz,Lz,t).N(Av,Av,t)] \leq [pN(Lz,Lz,t)+qN(Lz,Av,t)]M(Lz,Az,t)$$

$$M^{2}(z,v,t) \ge [p+qM(z,v,t)]M(z,v,t)$$

and

$$N^{2}(z,v,t) \leq [p+qN(z,v,t)]N(z,v,t)$$

$$M(z,v,t) \ge \frac{p}{1-q}$$
 and $N(z,v,t) \le \frac{p}{1-q}$

$$M(z,v,t) = 1 \text{ and } N(z,v,t) = 0$$

We get z=v.

Vol. No. 5, Issue No. 07, July 2016

www.ijarse.com

REFERENCES

- [1] Alaca C., Turkoglu D. and Yildiz C., Fixed points in intuitionistic fuzzy metric spaces, Smallerit Choas, Solitons & Fractals, 29(5)(2006), 1073-1078.
- [2] Atanassov K., Intuitionistic Fuzzy sets, Fuzzy sets and system, 20(1986) 87-96.
- [3] Banach S., "Theorie Les Operations Lineaires, Manograie Mathematyezne Warsaw Poland," In French, Z Subwencji Funduszu Kultury Narodowej, New York, 1932.
- [4] Chauhan, S., and Kumar S., Common fixed point theorms for compatible and subsequentially continuous mappings in fuzzy metric space, Kragujevac J. math. 36(2)(2012), pp.225-235.
- [5] Coker D., "An Introduction to Intuitionistic Fuzzy Topological Spaces," Fuzzy Sets and System, Vol. 88, No. 1, 1997, pp. 81-89.
- [6] Gregori V., Romaguera S., and Veeramani P., "A Note on Intuitionistic Fuzzy Metric Spaces," Chaos, Solitons and Fractals, Vol. 28, No. 4, 2006, pp. 902-905.
- [7] Jungck G., Commuting mappings and fixed points, Amer. Math. Monthly, 83(1976), 261-263.
- [8] Kramosil O., and Michalek J., Fuzzy metric and statistical metric spaces, Kybernetika, 11(1975).
- [9] Pant R. P., "Common Fixed Points of Noncommuting Mappings," Journal of Mathematical Analysis and Applications, Vol. 188, No. 2, 1994, pp. 436-440.
- [10] Park J. H., Intuitionistic fuzzy metric spaces, chaos, Solitions & Fractals 22(2004), 1039-1046.
- [11] Saadati R., and Park J. H., "On the Intuitionistic Fuzzy Topological Spaces," Chaos, Solitons and Fractals, Vol. 27, No. 2, 2006, pp. 331-344.
- [12] Schweizer B., and Sklar A., "Statistical Metric Spaces," Pacific Journal Mathematic, Vol. 10, 1960, pp. 314-334.
- [13] Turkoglu D., Alaca C., Cho Y.J., and Yildiz C., "Common Fixed Point Theorems in Intuitionistic Fuzzy Metric spaces," Journal of Applied Mathematics and Computing, Vol. 22, No. 1-2, 2006, pp. 411-424.
- [14] Zadeh L.A., Fuzzy sets, Inform. and Control 8(1965), 338-353.