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ABSTRACT 

Green’s function is an impulse response which describe how the system will react to a single point source. There is 

a powerful method of Green’s function to solve Quantum mechanical Coulomb problem. Its solution is commonly 

studied using Schrodinger equation. If one is able to represent a closed form expression for Coulomb Green’s 

function one can immediately extract the energy spectrum as well as the wave functions 

 

I INTRODUCTION  

Green’s function provides a powerful tool to solve differential equation with boundary conditions so that the problem 

has a unique solution. If one knows Green’s function of a problem one can write down the solution in a closed form 

as an integral involving the Green’s function and the inhomogeneous term appearing in the differential equation. The 

idea is to directly formulate the problem for Green’s function by excluding the arbitrary inhomogeneous terms. 

 

where L (x) is the differential operator, y (x) is an unknown function and f (x) is a known inhomogeneous term. Then 

the standard procedure is as follows. We have to find the Green’s function G(x, x
′
) such that it obeys the differential 

equation 

 

Green’s function will satisfy the same boundary condition of the solution y(x).  

 

Once we obtain the Green’s function from the above conditions we can write the solution as 
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II COULOMB GREEN’S FUNCTION FOR SCHRODINGER EQUATION 

The  Green’s function G  for  the non relativistic  Schrodinger equation is the solution of the equation 

 

In spherical polar coordinates 

 

this can be written as 

 

                     Where                                 

The partial wave expansion of  is 

 

using eq : (15), eq : (6) becomes 

 

 

Using                                      

equation (10) become 
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multiplying both side of the equation with and integrating we get 

 

 

From the orthogonality condition for spherical harmonics,  

 

 

 

 

Now separating out radial part we get 

 

Now put  Thus eq:(23) become 

 

Taking  we get the radial equation as 
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Substituting     and by taking x=ipr we get, 

 

We get the non relativistic radial wave equation for a coulomb potential corresponding to angular momentum state l 

is in the form 

 

We will first consider solution to radial equation in this simple form, so that solutions will look more 

transparent.Equation (21) is similar to the Whittaker differential equation,which is of the form 

 

solution of the Whittaker differential equation are known as Whittaker functions, given as 

 

where 1F1 is the confluent hyper geometric function of the first kind. Comparing eq:(27)and eq:(28) we can write  

and  k=i𝜖The coulomb wave function can also be expressed in terms of Whittaker functions. Thus 

solution of eq:(21) is 

 

This can be transformed into another integral which contain spherical Bessel function of integral order: 

 

We can prove this by proceeding from (25) to (24). We have 
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We have 

 

taking ,  and substituting eq: (28) in eq: (27) it becomes, 

 

 

Thus we have 

 

we also have 

 

Integrating and by applying limit first term become zero, then we have 

 

and eq:(31) can be written as 

 



  
 

280 | P a g e  
 

u1(x) as given by equation is an analytic function of ϵ inside the circle |ϵ| = 1 for every l. 

An analogous result for the second solution which is finite at infinity is derived in thefollowing. 

The second solution of Whittakerdeferential equation can be expressed in terms of confluent hyper geometric 

function of second kind U(a;b;z) and its integral representation is 

 

we get the second solution as 

 

It can be written as 

 

We can prove this by proceeding from eq:(43) to (42). On using modified Poisson integral representation 

 for hl(ixs), u2(x) as given by Eq.(36) can be written as follows 

 

 

Substituting eq:(38) in the eq.(37) we get 

 

On integrating by part with respect to p we get 

 

Thus,       
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this can be written as 

 

On making use of the identity 

 

We get  

On integrating with respect to s we get, 

 

In the above equation first term will become zero by applying the limit. similarly partially 

integrating l + 1 times.  

 

 

Diff erentiating eq:(47) l times with respect to β, we get 

 

Thus we have 
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Using  

 

On integrating by part with respect to s eq:(50) can be written as 

 

 

Therefore             

We now consider radial solution to the Schrodinger equation for a Coulomb potential, corresponding to angular 

momentum state l. They are usually denoted by and are related to and  by 

 

 

where and Dl are constant normalization factors . Since Green’s function is constructed from a function  

which is independent of their normalizations, we will for simplicity setCl= Dl= 1. The Green’s function  

is obtained following the usual procedure as 

Let  be a solution of this obeying the boundary condition r = 0 and letw2(x) be a solution of the same 

diff erential equation obeying the boundary condition at r = ∞ 

Then we can write the Green’s function as 
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To make continues at multiply the first expression by the value of second at  and multiply 

second expression by the value the of first at Thus we get 

Thus                                                                         (55) 

 

the wronskian                                                                      (57) 

 

Thus for we have 

 

from the eq:(52) we can write 

 

also from the equation eq:(33) 

 

substituting eq:(60) and eq:(61) in eq:(59), we get 

 

 

We can obtain the three dimensional green’s function by summing over the angular momentum state. 
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Using                                      

Thus we get          

 

Interchanging the order of summation and integration 

 

Using the familiar expansion 

 

 we get 

 

 

Up to now we have treated the case where potential is attractive. In the case the potential is repulsive,the sign of ϵ 

must be reversed. 
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III  CONCLUSION 

Although the radial Green’s function for the Schrodinger equation in a Coulomb field can be obtained in usual way 

in terms of two linearly independent solutions to the radial equation for a particular angular momentum state,the 

sum over angular momentum state does not seem to have been carried out. Here I reviewed a paper where the sum 

over angular momentum state is carried out and a ”closed form” for the Green’s function is obtained in terms of a 

double integral. The result may be useful for perturbation calculations where the intermediate states involve many 

angular momentum state. 
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