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ABSTRACT

Green’s function is an impulse response which describe how the system will react to a single point source. There is
a powerful method of Green’s function to solve Quantum mechanical Coulomb problem. Its solution is commonly
studied using Schrodinger equation. If one is able to represent a closed form expression for Coulomb Green’s
function one can immediately extract the energy spectrum as well as the wave functions

I INTRODUCTION

Green’s function provides a powerful tool to solve differential equation with boundary conditions so that the problem

has a unique solution. If one knows Green’s function of a problem one can write down the solution in a closed form
as an integral involving the Green’s function and the inhomogeneous term appearing in the differential equation. The

idea is to directly formulate the problem for Green’s function by excluding the arbitrary inhomogeneous terms.

Ly(x) = f(zx), yla) =y(B) =0 (1)
where L (x) is the differential operator, y (x) is an unknown function and f (x) is a known inhomogeneous term. Then

the standard procedure is as follows. We have to find the Green’s function G(x, x) such that it obeys the differential

equation

Le(e,x) =580 —x) (2)

Green’s function will satisfy the same boundary condition of the solution y(x).
Gla|x) =G(B|x) =0 (3)

Once we obtain the Green’s function from the above conditions we can write the solution as

y0) = [ GG fledax @)
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Il COULOMB GREEN’S FUNCTION FOR SCHRODINGER EQUATION

The Green’s function G for the non relativistic Schrodinger equation is the solution of the equation

2
(—h—rﬂ —g—E)G{r,r',E] = §r—r) (9

2m

In spherical polar coordinates

hzlﬂ(zﬂ) 1 a(_ga) 1 8 ZEG( B
“oaml e \" o) T atsing 06\ a0/ T raataimgag?] r 0 )0

= &§lr—+7 (6)

this can be written as

Alrrag @ 1 z . .
_E ;E(T E) —ELE_‘;,]—:—E G(r,r,E] = 5{1"—1"] I:?]

(sing2)+ = & (8)

1 3
Where Lpop = — 35) T mmtsagr

A ging 38

The partial wave expansion ofG (r,+ ,E) is

G(r.r E) = Z g (1) Vi (D Vi () (9)

I.m

using eq : (15), eq : (6) becomes

alr1oa ] 1 z
Z (‘ﬂ el ) e B E)SE':""*"‘”imm”mm]

1
zrzsineﬁ“{r—r']ﬁ“(ﬂ - 876(p — ) (107

Using L0 o Vi) = 10 + 1)V, (2) (11)

equation (10) become

#2118 ] I(i+1 z
e R

Tembrrar\ @/ T R
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:Tzsinen’i‘(r—r]fi(ﬂ—H]t’i{q:l—q:'] (12)

multiplying both side of the equation with ¥: - (2)and integrating we get

At 18 By I(l+1 z
D e R R L T e T

a Gl — ')

, J- §(0 - )Y (Ddn (13)

From the orthogonality condition for spherical harmonics,

f ViV, - (2)d02 = 66, (14)

L

ri1a ay I(l+1n Z
z(‘ﬂ () - 2 £) 00 Ve @61

_ &(r —Ir'] Vy e (2) (15)

rr

Mriay 8y lil+1n 2 &= .
(_ﬂ FE(TEE)_ {?"2 ]]_;_Ejgi'{?",r'jfi'.m'm]: TW.T Yi'.m":ﬂ] (16)

Now separating out radial part we get

Ariag ey l(+1n Z 5 —r)
( (P2) - ]]-:'Ejgf“"‘”‘“: — an

“omlrrar\ ar

5p

(rrf
rr’, Thus eq:(23) become

Now put g; (.77 =

ar1a gy II+1) Z
(_ﬁ FE(TEEJ_ {:z ]]—;—E)G;(r,r'] =&(r—r) (18)

Taking &; = Ewe get the radial equation as

o -9t

prcad e u=0 (19)
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Substituting EL"E =p?, EF i and by taking x=ipr we get,

'
Il
b
m
Il

1 d%u ( 2e I +1)
1= )u=n (20)

pldre

pr pir?

We get the non relativistic radial wave equation for a coulomb potential corresponding to angular momentum state |

is in the form

dx?

diu Zie (0+1)
(—1+—— p ]u:n (21)

X

We will first consider solution to radial equation in this simple form, so that solutions will look more

transparent.Equation (21) is similar to the Whittaker differential equation,which is of the form

aw (=1 k™ W =0 22
dz:+ 4 +z_ z2 - (22)

solution of the Whittaker differential equation are known as Whittaker functions, given as

1
= alf(mti+8)1
W) =¢ezz :T lF{—k-I-E,Em +1,z] {23:]

where 1F, is the confluent hyper geometric function of the first kind. Comparing eq:(27)and eq:(28) we can write

[+ 5 =m, x= %and k=ieThe coulomb wave function can also be expressed in terms of Whittaker functions. Thus
solution of eq:(21) is

':ll. [ —X

uy () = r+2

Fi+1—ie)iFI+1—ie,21+2.2x) (24

This can be transformed into another integral which contain spherical Bessel function of integral order:

x(2i)-t

Iiie)

1
ul{_r:l = J‘ dt(l _ t:] if'lt‘isg‘x':l‘f:'_j[{f_rt:] {25]
]

We can prove this by proceeding from (25) to (24). We have

1(z)  (26)

I+=

73
. S i
i) ‘\JEZJ
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di(l — t]l'f—lt—llfg—r[l—r:'ji (ixt) =

x 1 J”-
(20)-1rGe)
X g™ ¥ 7Tt . 1
= _|_ _ fe—1 -7 —xt-_

TG N2 ), A0 R s @)

We have

a’  rr
2T+ v + 1)

1
iF (;L,v +-o A+ 2v4 1,2:) (28)

1
J. dt(l — ) 1pAv-temi0 § (gf) = 5
o

takingix =ccv = [+ f u=ie, A=1+1—ieand substituting eq: (28) in eq: (27) it becomes,

LL J-Ldtlil _ ﬂﬂs—lt—tsg—xil—ﬂj_ (ixt)
(2a)-trie J, '
. 1
Vxvme® (ix) 2 r(l + 1 — ie)(ie)
= 1 1
@) 2% ra+or(i+d)

FU+1—ie I+ 1LI+1.204+2.2x)  (29)

w* e Pl +1—-ig)

= _ w‘n{F{.{ +1—ie (21 + 2): 2x) (307
2+t 2

ra+or(i+2

2

Thus we have

x(20)-t 2 . .
uy (%) = mj. dt(1 — £)iE-1pieg=x=t] ; (1ef) (31)
o
we also have
t . ] 1 n-n*ta
f dt(1 — £) et — [ =¥~y (ix) ] :J- dt(—) —[te=*-0,(ix) ]
0 Bt . t Bt

Integrating and by applying limit first term become zero, then we have

t . ) Lo —pf
f dt(1 —t]"E'lt"’"’a[tg"’“'rjj;&xﬂ] :J- EE( " :] ;e‘”-l‘“-‘j;{z:xt]dt (32)
o o
and eq:(31) can be written as
x(20)-0 t ) g
u, (x) = CETS) dt(l — t]"E‘it"’"’a[tg"”-l‘r:'j;[ixﬂ] (33)
o
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uy(x) as given by equation is an analytic function of ¢ inside the circle |¢| = 1 for every |.
An analogous result for the second solution which is finite at infinity is derived in thefollowing.

The second solution of Whittakerdeferential equation can be expressed in terms of confluent hyper geometric

function of second kind U(a;b;z) and its integral representation is
1 7= .

Ula;b;z) = —f et (1 4 £)F 0 g (34)
Faldy

we get the second solution as

[+1 _—-=x

x
S — [=ig |.+l'7 2xE
uz () r{f+1—LfIIJ‘ ds(s—1) (33)
It can be written as
—x(—2¢)! .
uy (x) :;;{TE] ds(s — 1) L5 p (ixs) g=* (-0 (36)
2 i .

We can prove this by proceeding from eq:(43) to (42). On using modified Poisson integral representation

for hy(ixs), u,(x) as given by Eq.(36) can be written as follows

'1-[‘{.7.':' mj‘ dS{S—l:] —ig-1 LH:J‘dF{P—lT LIll—...?‘I‘.‘I‘l {3?:]

J.:\': a {p_l:]l. x(1-2ep )
1

N _ [ x'l 2zp]
W (o) J dp(p—1)'p'e (38)

f=1

Substituting eq:(38) in the eq.(37) we get

(3%)

ai gx'.l—:.m_:l.?J:I
i

I[+1 ) o o= )
) = gy | G -0 f d?[agﬂi? Yz,

On integrating by part with respect to p we get

o B[ gXl1-1 =p ) B[ g [1-2=8)
ap— =—1 - - 40
L Pogi?P T a8 " (—2xs)l(2xsp) I+t (40)
—_ Ii_i ie— 1 I+ig ai ﬂr:i ":S:I
Thus, w0 = oo ds (= 107 B o w0
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_ ds(s —1)-ie-tgie-l-1 —___ ~ 41
r{—iE]J.l sl = s S oD g (41)
this can be written as
rd +1-ie) oy g, B e

{5 _ 1]—LE—15LE—|.—1

u, (x)

Tri+1-i9 L ds I'(—ie) 881 (—2x)1(2xp )i+t

On making use of the identity

g+t . T(+1-ie)
ie 1)) =
L+L[s (s —1)%] T —ie)

(s —1)-tetgieit (43)

. E[ E,z:i—z:ﬁ’j
ie [—ie I
" [s% (s — 1)k ([_zr:,[r_z,,ﬁ;.:—ijﬁ:l

+1
We getu, (x) = rI . _r PYT

rli+1-igd

sim (44)

On integrating with respect to s we get,

) = i al g* (1—235) P et - s=m
B T i+ 10 |agt (m)ﬂ s -1

= gl E.‘,J:'fj. 2z7)
_L @(i—zxﬂzxﬂl l+1)

In the above equation first term will become zero by applying the limit. similarly partially

=1

(s — 1)-*]ds (45)

integrating | + 1 times.

= a.[ Ex'.l 1z8) ot .
u(x) = mj-l @(Wj (—2xg) s (s — 1) *ds (46)
1 a.i E,xll 2zf8]
“=(ﬂ=mf ds sl =V o T lell] 47

Diff erentiating eq:(47) | times with respect to S, we get
i+t = L .
[ +iE _ [-ic —2x=
u lx) = MMTio® J-l ds s (s — 1)1, (48)

Thus we have

(42)
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—x(=2i)"t = . -
u:{_r:l = —2-?-'{—:-5:' 1 ds (= — 1:]—lE—llehil{:-xs:]g—rls—ﬂ (49)
Using
—x(—2i)7F =

. d ;
d — 1)iegie —rls—ﬂh;. i
2ril —ie) J, s —17s" o se xs)

—x(=20)7" = s NEa )
T 2r —io ), % (5—1) E[SE i (ixs)] (0)

On integrating by part with respect to s eq:(50) can be written as

—x( =21t 5 . iE ) = 5 . i1 1 )
= [( ) se"r"‘g_ﬂh%{fxs:]] - J‘ ie ( ) se~ ¥~ U pl(ixs) ds
L

2rii —ie} s -1 s —1 (s —1)2
—x(—20)" = . . .
_ s = Efe _qy—is—1p175 —xlz—11
=2 ), dss*(s —1) hi(ixsle (51)
P P . . .
Therefore uy(x) = _f'l.l‘_"l_ﬂ I, dss*(s — lj'LEi[se ~xle-UpLiixs)] (52)

We now consider radial solution to the Schrodinger equation for a Coulomb potential, corresponding to angular

momentum state |. They are usually denoted by w, (r)and w,(+)are related to u, (x)andu,(x) by

w, () = Cpu, (x) (33)

w,(r) = Dyu, (x) (34)

where Cjand D, are constant normalization factors . Since Green’s function is constructed from a function
which is independent of their normalizations, we will for simplicity setC,= D= 1. The Green’s function
is obtained following the usual procedure as

Letw; (x) be a solution of this obeying the boundary condition r = 0 and letw,(x) be a solution of the same

diff erential equation obeying the boundary condition at r = o
Then we can write the Green’s function as
Glrrz) =wr), ="

=wy(r), <
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To make G;(r".+", z)continues at ' = »"multiply the first expression by the value of second atr = "

second expression by the value the of first at » = »"Thus we get

Thus Glrrz) = “1[:][+H r'=r" (55)
_ Wy {'?"I]W]_ {'i"'"] ' W
TS TET 0
the wronskian iz = wllir']w;[r] — wp (r Dy ) (57)
@) = p2-ai-t (58)
Thus for +" = +'we have
. _W:(?"I]W]_{?""]
Glr,r"z) = @ (59)
from the eq:(52) we can write
. _—ip?"'(—Ei]E * e _.;Ei ipr e=1) g1 o
wilr) = Sre— | dss =) s Phiers)] 60

also from the equation eq:(33)

—ipr (201

wilr ) ==

1
. d -
J. (1—¢t)e t—u—'a[tglpr [1_rjj;{p?"”t]j|dt (61)
o

substituting eq:(60) and eq:(61) in eq:(59), we get

o B —E[ {Ep]z?"l?"ni_ﬁz_ﬁ_l a 1 .
GO rmz) = 29T —ora +if]J.1 dsJ-D dt [s(1 — 5)]= (1
2 .- .
— )7 5 [e Pl a-0r -2 st ey ni s (62)
Do iprr" = : e
G (v, ", ) = raCora HE]L dsj; dt [s(1 — £)]*[e(1
2 .- .
S I Ll BT T LD | BN CEY

We can obtain the three dimensional green’s function by summing over the angular momentum state.
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and multiply
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Grrnn) = ) ) Ay, (99)V; (60) (64)

Using Pi(cos8) = Ty, =~ Vi (8) Vi1 () (65)

Thus we get Gl e z) =X, % (4rr's ) (20 + 1) B(cos 8) G (. r".2)  (66)

o 2A+1 ipr'r" = t e
G{?‘ T _.Z:] - Z "]:"JI‘?"I?"“FL {':'DS H] F(l ¥ EE:].r{l — E-E:] J.i dsJ.D gt [5(1 - t]] [t(]‘

L

2 _ .
[gip[rf.j.—rfl—r [l'ﬂ]stj;[p?"f]hﬂp?"us:]] (67

_ —iE
2 Blrrem

Interchanging the order of summation and integration

- [ 1 2z
roer Y P _ aTie e 8 ip[r (1—f—r [1-2] z
Glr'r"z) %F(l-l—iE]F(l—iE]J.i dsL dt[s(1 — £)]"[t(1 — 5)] ﬂtﬂs[g ] [ (21
+ 1) B (cos 8) ji(pr't)hi (pr's)
Using the familiar expansion
g[p|.3r"—rr"| =
I 3 o EVRE (e
P — ;{254—1}!{{1:059]_;[{;1? R} (pr 5) (68)
we get
Glr'rz) = i J-Id fldt[ 1- )= [e1
T S At era —wm ), %), At m Ol
B . ] E?[1':||.31""—t'r'r|
_ —ig ip[r (a-0-rT1-2]
53] 319s [stg ——— h‘"|] (697

1

o 1
Gl ezl = 1190 — i J-l dSJ.D dt [s(1 — £)]*[#(1
2

o] i [5t|5f'“ _ n_‘I_j_gip[r'[1_—rfl+r"f.s—1_"+|sr"—rr'rl]] (70)

dtds

Up to now we have treated the case where potential is attractive. In the case the potential is repulsive,the sign of ¢

must be reversed.
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111 CONCLUSION

Although the radial Green’s function for the Schrodinger equation in a Coulomb field can be obtained in usual way
in terms of two linearly independent solutions to the radial equation for a particular angular momentum state,the
sum over angular momentum state does not seem to have been carried out. Here | reviewed a paper where the sum
over angular momentum state is carried out and a “’closed form” for the Green’s function is obtained in terms of a
double integral. The result may be useful for perturbation calculations where the intermediate states involve many

angular momentum state.
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