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I INTRODUCTION

In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of
those variables, with the others held constant (as opposed to the total derivative, in which all variables are
allowed to vary). Partial derivatives are used in vector calculus and differential geometry

Since in general a partial derivative is a function of the same arguments as was the original function, this
functional dependence is sometimes explicitly included in the notation, as in the partial-derivative symbol is 0.
One of the first known uses of the symbol in mathematics is by Marquis de Condorcet from 1770, who used it
for partial differences. The modern partial derivative notation is by Adrien-Marie Legendre (1786), though he
later abandoned it; Carl Gustav Jacob Jacobi re-introduced the symbol in 1841

Il PARTIAL DERIVATIVES
Definition: Let f be a function of two variables, and let [xu,}rc.] be in the domain of f. The partial derivative
of f with respect to x at (xy, ¥, is defined by

flacg +h v )= Flxg. ¥)
h

fe (X0,70) = limy 4
provided that this limit exists. The partial derivative of f with respect to ¥ at (x[,, }ruj is defined by

f{xu, J’D"‘h}_f':xw}"n]
h

f:v (x9,)0) = limy,_q

provided that this limit exists.

Key Words: Partial Derivate, Gradient, Tangent Approximations, Higher Order Derivates, Chain

Rules

Note: If z = f(x, v), then we can write £, (x, ¥) = Z—f and f,(x¥) = Z_f

Example 1: Let f(x, v) = 24xy — 6x2y.

Find f, and f,, andevaluate f,and f, at (1,2).
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Solution: By holding ¥ constant and differentiating f with respect of x, we find that

f.(x,v) = 24y — 12xyso that f,(1,2) = 48 — 24 = 24 By holding x constant and differentiating f
with respect to ¥, we find that f:__,'[x, V) = 24x — 6x2 so that

fy{l,z} =24—-6 =£.

Remark: f.(xg, ¥,) is slope or rate of change in xx —direction at (x4, v, ), and £, (2g,3) is the slope of

the surface in the ¥ — direction at (g, ¥ ).

Example-2: Let f(x,v) = x*y + 5y

(a) Find the slope of the surface z = f{(x, ¥) in the x — direction at the point {1,—2)

(b) Find the slope of the surface z = f(x, ¥) in the y — direction at the point (1,—2)

Solution: (a) Differentiating f with respect to with ¥ held fixed yields £, (x, v) = 2xy.

Thus, the slope in the x — direction is fx[l,—z} = —4; that is, Z is decreasing at the rate of 4 units per unit
increase in x.

(b) Differentiating f with respect to ¥ with x held fixed yields £, (x,¥) = x4+ 15y%

Thus, the slope in the ¥ —direction is fy{l,—Z} = 61; that is, Z is increasing at the rate of &1 units per unit

increase in y.

2.1 A Geometric Interpretation of Partial Derivatives

When we hold " equal to a constant ¥ = ¥y, £ = f {x, }r} becomes the function z=Ff [x, }r,;,} of
x, whose graph is the intersection of the surface = = f(x, ¥) with the vertical plane ¥ = ¥, (Figure 4).
The x —derivative £, (xg.¥g) is the slope in the positive x —direction of the tangent line to this curve at
X = x,.

Similarly, when we hold x equal to a constant x5, = = f(x, ) becomes the function

Fangent line of

slope " (x5 Vo)

FTanpent hine of

slope [ (v V)
f(x. v) 1} " o M
fiv, v)

FIGURE 1 FIGUIRE 5
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If z = f (x,v), we use the following notation:

L W= ()=
s k3@
I R Gl =
o G5 () -5

Z

Thus the notation £, ¥ (O’r ) means that we first differentiate with respect to x and then with respect to ¥,

Bydx
whereas in computing ,ﬂ_x there order is reversed.
Example-3: Find the second partial derivatives of f(x, v) = sinxy?.
Solution: The first partials are given by

f.(x,v) = ¥y’ cosxy® and f,(x,y) = 2xy cos xy?

We obtain the second partials by computing the partial derivatives of the first partials:
fer (2, y) = —y* sinxy?

fey(,¥) = 2y cos xy? — 2xy? sin xy?

frx(2,¥) = 2y cos y? —2xy3¥sinxy?

foy(,¥) = 2y cos xy? —4x?y? sin xy?
Theorem: Suppose f is defined on a disk I that contains the point [a, b]. If the functions f;}_ and e Are
both continuous on I, then
feyla,b) = f,.(a,b)
Example-4: Calculate f... if f (x ¥, z) = sin(3x + yz).
Solution:  f, = 3 cos(3x + yz) ferw = —9sin(3x + yz) fewy = —92 sin(3x + yz)
fexyz = —9yz sin(3x + yz) — 9cos(3x + yz)
2.2 Differentiability of functions of several variables
Recall that in the case of a function of a single variable, a function f(x) is differentiable only if it is

continuous; but that continuity does not guarantee differentiability. Intuitively, continuity of f(x) requires that
its graph be a continuous curve; and differentiability requires also that there is always a unique tangent vector to

the graph of f(x). In other words, a function f(x) is differentiable if and only if its graph is a smooth
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continuous curve with no sharp corners (a sharp corner would be a place where there would be two possible
tangent vectors).

If we try to extend this graphical picture of differentiability to functions of two or more variables, it would be
natural to think of a differentiable function of several variables as one whose graph is a smooth continuous
surface, with no sharp peaks or folds. Because for such a surface it would always be possible to associate a
unigue tangent plane at a given point.

However, “differentiability” in this sense turns out to be a much stronger condition than the mere existence of

partial derivatives. For the existence of partial derivatives at a point = requires only a smooth approach to the
point f(x,) along the direction of the coordinate axes. We have seen examples of functions that are
discontinuous even though

lim, _,,(x,0) = lim,_,;(0,y) both exist.

(x—v)?
x2 +:,rz

. . . af af .
For example, the function f(x,y) = has this property, and in fact both . and . exist and are

continuous functions at the point {0,0).

With this sort of phenomenon in mind we give the following definition of differentiability.

Definition: We say that a function f: R? — IR of two variables x and y is differentiable at (XD, Fu] if
af af . .

1. Both 5~ and - exist at the point (%0 ¥g)

N A 2 N A [2 N N
> Tim,. Flayi—flag .}‘u,'_[a_i':-xusyu,'] (e xu,l—[%{xuwu,'][y— Yo) _ 0
' (. = 2008+ (y— 3)°8

Remark: The limit condition simply means that
af af
Fx,y) = flxp, vo) + [@ [xn,}fn)] (x — x) + [é‘_’v Exg,yn)] v — o)

is a good approximation to f (x, ) near the point (%g, ¥).

The chain Rule

Recall that the chain rule for functions of a single variable gives the rule for differentiating a composite
function: If v = f(x) and x = g(t), where f and g are differentiable functions, then vy is indirectly a

. . . dy dy 4d
differentiable function of t and Y=
dt dx dt

Theorem (The chain rule: case -1)

Suppose that z = f(x, v) is a differentiable function of x and v, where x = g(t) and y = #(t) are

both differentiable functions of t. Then z is a differentiable function of t and
@ _of dx 8 dy
dt dx dt Ay dt
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Proof: A change of At in t produces changes of &Ax in x and Ay in y. Thus, in turn,

d

: 8
produce a change of &z i z,and we have Az = é Ax + a—i Ay + e,Ax + Ay

where €; = 0 and e, = 0 as (Ax,Ay) — (0,0). [If the functions €; and &, are not defined at (0,0),

we can define them to be 0 there.] Dividing both sides of this equation by At, we have

Az _Of Ax O By, _ ax, by

At Bx At dy At 1 oar 2 At
If we not let At — 0, then Ax = g(t + At) — z(t) — 0 because & is differentiable and therefore

continuous.
Similarly, Ay — 0. This, in turn, means that €, — 0 and €, — 0, so0

d= . d=

— = lim —=
de Ar—0 4y

aF .. A 8F 5. Ay . A . . Ay
=L lim —x+—f11m—}—|-(11m 51) lim —x+{11m En) lim ==
Bx ar—p Aty par—sp A At—+0 Ar—0Q At ar—0 °/ ar—p At
f dx F dy dx dy
== —4+ = —40. —4+0. —
fx dt + Ay dt + de + dt

_9f ax  9f ay
dx dt By dt’

. . dz af . . .
Since we often write = in place of 3. e can rewrite the chain rule in the form;

dz _ dz dx dz dy

dt dx dt oy dt
9 , , d
Example-1: If z = x*y + 3xy* where x = sin2t and y = cost, find d—‘: whent = 0.

Solution: The chain rule gives

dz _ dz dx , 8z dy _ 4 2 3 (o
- o T 5 2t =(2xy +3y%) (2cos2t) + (x +12x}r][ smr)

Observe that when t = 0, we have x = sin0 = 0 & y = cos0 = 1,

Therefore% =(0+3) (2cos0) + (0+0) (-sin0) = 6.

t=0
Example-2: The pressure P (in kilopascal), volume V (in liter), and temperature T (in Kelvin) of a mole of an

ideal gas are related by the equation PV = 8.31 T. Find the rate at which the pressure is changing when the

temperature is 300k and increasing at a rate of 0.1 &/ s and the volume is 100 L and increasing at a rate of 0.2

L/s.
Solution: If t represents the time elapsed in seconds, then at given instant we have
T = 300, % =01, V= 100,% = 0.2.Since P = 8.31 Ethe chain rule gives
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dPf _ dp dT gP dV __ 831 &T 831 dv

it 8T dr = 8V dr v odr ¥ odr
_ 831 _ e31(300) _
=22 (0.1) - 2222 (0.2) = —0.04155

The pressure is decreasing at a rate of about 0.042 kpa/s.
We now consider the situation where =z = f(x,v) but each of x and ¥ is a function of two variables

sandt:x = g(s,t),v = #ls,t). Then Z is indirectly a function of s and t and we wish to find

= E = ES
E ard E
Theorem: (The chain rule: case-2)

Suppose that z = f(x,¥) is a differentiable function of x and y, where x = z(s, t)and

v = #(s,t). Then z is indirectly a function of s and t. Then
6z _Gzdx 0z 0y 0z 6z Bx 0z By
ds dxds By d8s ' Bt Hx Bt By Bt

. 2 1. po g 8 a
Example-3: If z= e* sin y, where x = st* and y = 5°t, find a_: and a_;:'

Solution: Applying case 2 of the chain rule, we get

dz dz dx dz dy . 2 x
Frt g—ka—}r g—[e siny) (t*) + (e* cosy) (2st)

= t2e°t sin(s?t) + 2ste cos(s%t)

dz dz dx dz dy . x 2
el E—}a—}r E—[e siny) (2st) + (e¥ cosy) (s5°)

= 2stet sin(s2t) + s%e® cos(s%t)
Example-4: Write out the chain rule for the case where w = f(x, v, z, t) and
x =x(u,v), v=y(uv), z=z(uv), & t=tluv).

Solution: Using the tree diagram given below, we can write the required expressions.
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dw dwdx dwdy dw dz N dw dt
du dx du dy du 9z du It du
dw dw dx Swa}r_l_awaz_l_awat
dv dx dv dy dv 9z dv = At v

Example-5: If u=x%y +y?z* where x = rsef,y = rs’

3
value of ﬁ whenr=2, s=1, t =0,

Solution:

o T

/NN /N

We the help of the tree diagram given above, we have

du du ﬁx_l_ﬂu B}r_l_ﬁu 0z
ds dx ds dyv ds dz ds

= (4x3y) (re®) + (x*+ 2yz?) (2rse ™) + (3y%z% ) (r¥sint)
Whenr =2, s=1,andt = 0,we havex = 2,y = 2,and z = 0,
So 2= (64) (2) + (16) (4) + (0) (0) = 192
Example-6: If z = f (x,¥) has continuous second—order partial derivatives and

x=7r%+s*and y = 2rs, find

@ 22 and &=

ar ar?

[JARSE
ISSN 2319 - 8354

e~ andz=r%ssint, find the
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Solution:

@ The Chain Rule gives

dz dz dx 9z dy oz

ar axar ayor axl’ '-'“”—(2’3]
(b) Applying the product rule to the expression in part (a), we get
8%z

—=%(21‘ z—i+252—i)

ar?
L b= a 8z 8 o= .
= EE—F 21"5 [E}—F 255(5) (j
But, using the chain rule again, we have

=

o
A

~ oy ”~ 50

2(E) o2 ()22 (E)z 2
dx \dx dx dx/ or dy \dx/! dr dx
a (E‘z} a 8z 8x a8 (33)3}

— === (2=, 2= 2r 25
dr \dx o (a}-)ar—l_ﬂ}- dxt dr E':::E'_}[ :]+ ( :]

Putting these expressions into equation (=) and using the equality of the mixed second order

derivatives, we obtain

9%z Eaz—I-E ﬂzz_i_z 9%z 2252 a%z 19 9%z
arz “ax T\ ax? Sﬂ}rﬂx s Tﬁxﬂ}r Sﬂ}rz

8tz 8%z
45° —
dxdy + r

Ba

—2—-I-4 Z—-I-Brs

Implicit Differentiation: If F is differentiable, we can apply case 1 of the chain rule to

differentiate both sides of the equation F(x,¥) = 0 with respect to x given that ¥ = f(x).

Since both x and y are functions of x, we obtain.

dF dx | 8F dy _

fx dx Ay dx
d .~ OF dy H
But = =1, so if — # 0 we solve for £ and obtain
dx oy dx

_9F

dF
oy

& &
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Example 7 Find ¥" if x® + y% = 6xy.
Solution: The given equation can be written as
Flx,y)=x*+y?—6xy=0
So the above formula gives
dy —F 3x% -6y B

X

— 2x
— 2x

dx E, 3y2 —6x

x:
},2
Now we suppose that z is given implicitly as a function z = f(x, ¥} by an equation of the
form F(x,v,z) = 0. IF F and f are differentiable, then we can use the chain rule to

differentiate the equation F(x,v,3) = 0 as follows:
ﬁFﬁ'x_'_ﬁF ﬂ}r+6F 0z —0
dxdx dy dx dz dx B

But;—x (x) =1 and ;—x (¥) = 0 so this equation becomes

aF+aF 9* .
ax 9z dx

If ? #+ 0, we solve for Z—z and obtain the first formula of the formulas given below. The
3 x

az . ] ) .
formula for ﬁ is obtained in a similar manner.

3F _gF
aE':_E.F._E ﬁ:__a?ay
dx 2 Ay =
83 G

Example-8: Find z—i and Z—: if x¥+y3+z3 +6xyz=1.

Solution: Let F(x,v,z) = x¥*+ y¥+ z¥ + 6xyz— 1. Then , from the above formulas, we

have
B_z — _Fx — _Exz+6}'z — _:::5+2}'z B_z — _E}; — _3}'z+6}'z — _}'z+22¢2’
ax Fr 3z +éxy 42y ' Ay Fr 3z¥ +éxy 2+ 2xy

Application of Partial Derivatives:

Directional Derivatives and Gradient of functions of several variables

Directional Derivative:
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Definition: Let £ be a function defined on a set containing a disk D centered at (x4, ¥, ). and
let u = a;i + a,j be a unit vector. Then the directional derivative of f at (x4 ¥,) in the

direction of u, denoted D, f (x;, ¥, ). is defined by

Flapthay ¥oshag :I_f':-":u o)
h

D, f (xg,¥) = lim; g
provided the limit exists.
Theorem: Let f be differentiable at (x,,,). Then £ has a directional derivative at
(x4.%,) in every direction.
Moreover, if u = a,i + a,j is a unit vector, then
D, f (x4, ¥) = fi(xg.¥5)ay + ﬂ-(xur}’c&]ﬂ:-

Proof: Let F(h) = f(x, + hay,y, + ha,)

F(h)—F(0) flag+hay, ygthag J—Fflxs. ¥g)

Then o -

So that D, f (x,.%,) exists if and only if F'(0) exists. If we let
g1(h) = xy + ha, and g,(h) = v, + ha,, then
F(h) = f(g.(h). g;(h)).and g,(0) = x, and g,(0) = ¥,.
With & replacing t and 0 replacing to, the hypothesis of chain rule F'(0) exists, and
D, f (xp.30) = F'(0) = f.(x0,70)91(0) + £, (0.7 )92(0)
= fe(xo:¥0)ay + £ (x0. 70 )@y

Example -1: Let f (x,v) =6 —3x* — y%,and letu = - i_j.

Wz W2
Find D, f (1,2).
Solution: Notice that u is a unit vector. First we calculate the partial derivatives of f:

f(oy) = —6x and f,(x.y) = —2y.

ThereforeD, £ (1,2) = £,(1.2) (%) + £,(12) (F) = (-6) (%) + (- (F) = -2

2 W

Remark: The directional derivative in the direction of an arbitrary non-zero vector a is

defined to be D f (xg, v, ), where u = ﬁ a.

Example-2: Let f (x,¥) = x¥*and let @ = i — 2. Find the directional derivative at (—3,1)

in the direction of a.
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Solution: In this casellall = /12 +(—2)2 =+/5, so we will find D, f(—3,1), where

1 1. 2., .. _ 2 _
u—ma—v—iz—v—ﬁj.SInceﬂ[x,}r]—}r and £, (x, y) = 2xy

Thus
1 —2 1 —2 13 —
D.f(-31) = £(-31) (E) +£L,(-3D(F) =1(F) + -6 (F)= 5.
Let w=a,i+a,j+a; to be a unit vector in space. The directional derivative

D, f (x4, vy, 2,) is defined by

f (xgt+hay yg+hay 2g+hag)—Flxg. Yo Zq)
h

Dyf (xg,¥0.2) = limy_g
provided that the limit exists.
D, f (x0.¥0.20) = folxp, Yo, Z0) a4 +ﬂ-(xur}’urzuja2 +}";(3€D,}?D,ZD] !
The Gradient

Definitions:

a) Let f be a function of two variables that has partial derivatives at (x,,¥,). Then the
gradient of f at (x,, ¥, ), denoted grad f(xg. v,) or Vf(x,v,) is defined by
grad f(xg,¥,) = V(xgvy) = fi(x0.30)i + £, (30, 7]

b) Let f be a function of three variables that has partial derivatives at (x,,¥,,2,). Then the
gradient of f at (xg.,.3,), Which is denoted grad(x, vy, 30) or Vf(xg vy 25) iS
defined by

grad f(xq,¥s,80) = Vf(x0,¥.25)
= fe(x0.0,80) 1 + £, (20,30, 20)J + £, (%00, 2o )k
Example -3: Find the gradient of the function f(x,v) = x*y*® — 4y at the point (2,—1).
Solution: We  first  compute the partial derivatives at (2,—-1),
folxy) = 2xy? and f (x,y) = 3x%y* — 4,
Hence £,.(2,—1) = —4and f,(2,—-1) =8

Therefore, Vf(2,—1) = —4 i+ 8j.

Notes: D f (x,¥) =Vf (x,¥).u

Example-4: If f(x,y,z) = xsinyz,
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(@) Find the gradient of f and

(b) Find the directional derivative of £ at (1,3,0) in the direction of v =i 4+ 2j — k.

Solution:

@) The gradient of f is

Vi(x,y,z) ={f.(x v 2).f,(x,v2). f, (x,y,2) ) = (siny z ,xz cos yz, xycos yz) =

(0,0,3)

(b) The unit vector in the direction of v =i +2j —kisu = fgi + «,_?' — }E k.

Therefore,

D_f (1,3,0) = Vf(1,3,0) - u = 3k - (}EL +2 —fgk)

- 3
=3 (%) =- >

Theorem: Suppose f is differentiable function of two or three variables. The maximum value
of the directional derivative D, f (x) is [Vf(x)| and it occurs when u has the same direction
as the gradient vector Vf(x).

Proof: We know that D_,f = Vf -u

Thus, D f = Vf -u = |Vf| lul cos8 =|Vflcos 8 where 8 is the angle between Vf and u.
The maximum value of cos & is 1 and this occurs when & = 0. Therefore the maximum
value of D_f is [Vf| and it occurs when & = 0, that is, when u has the same directionVf.
Example-5:

@ If £ (x,v) ==xe¥, find the rate of change of f at the point P(2,0) in the

direction from P to Q (3 2).

(b) In what direction does f have the maximum rate of change? What is this

maximum rate of change?
Solution:
@) We first compute the gradient vector:

Vi(x,y) = (f.f,) = (e¥,xe”) = Vf(2,0) = (1,2)

The unit vector in the direction of PQ = (—1:5,2) isau = {%,E}, so the rate of change
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of f in the direction from P to Q is
= Sy = A2 H g (2B 2=
D.f(20)=Vf(20)-u=(12)- (7.0 =1(F)+2(;)= 1
(b) By the above Theorem f increases fastest in the direction of the gradient vector

V£(2,0) = (1,2). The maximum rate of change is (V£(2,0)) = [{1,2}| = +/5.

Tangent planes

Suppose a surface S has equation z = f(x,v),where f has continuous first partial
derivatives, and let P[xDJ}rD,zD) be a point on S. Let C, and C, be the curves obtained by
intersecting the vertical planes ¥ = y, and x = x, with the surface S. Then the point P lies
on both €, and C,. Let T, and T, be the tangent lines to the curves C, and C, at the point P.

Then the tangent plane to the surface S at the point P is defined to be the plane that contains

both tangent lines T, and T,.

"
>

The tangent plane contains lines T, and T,

If C is any other curve that lies on the surface S and passes through P, then its tangent line at
P also lies in the tangent plane. The tangent plane at P is the plane that most closely
approximates surface S near the point P.

Any plane passing through the point P[xﬁa}rﬁ,zu) has an equation of the form.

Alx —x,)+ Blyv—y,) +C(z—z,) =0
By dividing this equation by C and letting a = % and b = ?, we can write it in the form

Z—Zy=alx—xy)+ bly—wy) ()
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() represents the tangent plane at P, then its intersection with the plane ¥ = y, must be the
tangent line T,. Setting ¥ = ¥, in (*) gives

Z—Z,=alx—x,) V=1,
and we recognize these as the equations (in point — slope form) of a line with slope a.
But the slope of the tangent Ty is £, (x,, ¥,). Therefore a = f,(x,.v,).
Similarly, putting x = x, in (=), we get Z—Z, = b(y — v,), which must represent the
tangent line Ty, S0 b = f,, (x4, 35)-
Definition: Suppose f has continuous partial derivatives. An equation of the tangent
plane to the surface Z = f (x,y) at the point P (x4 1,, 24 ) is

Z—Zy= filxgyy) (x—xg) + £, (e yp) (v — ¥g)
Example-1: Find the tangent plane to the elliptic paraboloid z = 2x? 4+ y* at the point
(1,1,3).

Solution: Let f(x,¥) = 2x*+y%. Then £, (x,v) = 4x flxy) =2y
= f(11)=4 f(@11)=2
Then (by definition) the equation of the tangent plane at (1,1,3} is

z—3=4(x—1)+2(y—1)=>z=4x+ 2y —3.

Tangent plane approximations and Differentials
Tangent plane approximations

In example 1 the tangent line £(x,y) = 4x 4+ 2y — 3 is a good approximation to f(x,y)
when (x, y) is near (1,1).
The function L is called the linearization of f at (1,1) and the approximation
flx,y) X 4x+2y—3
is called the linear approximation or tangent plane approximation of f at (1,1).
Definition: An equation of the tangent plane to the graph of a function f of two variables at
the point (a, b, f(a, b)) is z = f(a,b) + f,(a,b) (x —a) + f,(a,b) (y— b)
is called the linearization of f at (a, &) and the approximation

flx,y) ® f(a,b) + f.(a,b) (x—a) + f,(a,b) (y— b)
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is called the linear approximation or the tangent plane approximation of f at (a, b).

Theorem: If the partial derivatives f, and f, exist near (a,b) and are continuous at (a, b),
then £ is differentiable at (a, ).

Example 2: Show that f(x,v) = xe*¥ is differentiable at (1,0) and find its linearization
there. Then use it to approximatef (1.1, —0.1).

Solution: The partial derivatives are
fo(xy) = ™ 4 xye™ f,(xy)=x*e" = f(1,0)=
1& f, (1,0)=1

Both f,. and f, are continuous functions, so f is differentiable by the above theorem. The
linearization is L (x,¥) = f(1,0) + £.(1,0) (x— 1) + £,(1,0) (y—0) =x +y

The corresponding linear approximation is xe*¥ & x +y

Sof(1.1,-01)~11—-01=1

Compare this with the actual value of (1.1, —0.1) = 1.1e~"* & 0.98542,

Differentials

If £ is a function of two variables, we can replace (x,¥,) by any point (x, y) in the domain

of £ at which f is differentiable and the linear approximation is transformed into

flx+hy+k) —f () ¥ f(x,y)h + f,(x, y)k- (*)
The number £, (x,y) h+ £, (x, y)k on the right side of (=) is usually called the differential
(or total differential) of f (at (x,y) with increments h and k) and is denoted df. Thus
=f. (e y) h+ f(x, 0k - (==) . Of course, df depends on x, v, h and k, even though

they are not indicated in the notation df.

If g,(x,¥) =xand g,(x,y) =y, then the differential dz, is denoted by dx, and the
differential dg, is denoted by dv. Since

(g1): () =1,(g.),(x,y) = 0,(g2),.(xy) =0,(g2),(x,y) =1

Wehave dx =dg, =1.A+0.k=Hhanddy=dg, =0.Ai+1Lk=k

Therefore we can write (%) as
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df = f.(x,y)dx + f,(x, y)dy or df = de +3_de

Example -3: Let f(x,y) = xy* + ysinx. Find df .

: , 8 : 3 :
Solution: Since a—f =y~ + ycosx and a—f = 2xy + sinx
x ¥

Thus df = (y¥% + ycosx)dx + (2xy + sinx)dy
Note: If f is a function of three variables that is differentiable at [xDJ}rD,zD), then the
differential df is defined by df = £, (x,y,z) A + f,(x, 3. 2)k + f.(x, y, 2)¢
The more usual form for df is
df = f.(x,y,2)dx + f,(x,y,2) + f.(x y,2)dz

df =Fdx+Ldy+7dz

Image Resizing

Partial derivatives are key to target-aware image resizing algorithms. Widely known as seam carving, these
algorithms require each pixel in an image to be assigned a numerical 'energy' to describe their dissimilarity
against orthogonal adjacent pixels. The algorithm then progressively removes rows or columns with the lowest
energy. The formula established to determine a pixel's energy (magnitude of gradient at a pixel) depends heavily

on the constructs of partial derivatives.

Economics

Partial derivatives play a prominent role in economics, in which most functions describing economic behavior
posit that the behavior depends on more than one variable. For example a societal consumption function may
describe the amount spent on consumer goods as depending on both income and wealth; the marginal propensity

to consume is then the partial derivative of the consumption function with respect to income.

CONCLUSION

By the definition of partial derivates we are finding first order and second order up to higher order derivates and
their functions of differentials and gradient of a function and their function of chain rules applying on the
functions. Finding function of tangent approximations and their function is continuous and differentiable and

mainly partial derivates are applying in economics and their function behavior.
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