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I INTRODUCTION  

In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of 

those variables, with the others held constant (as opposed to the total derivative, in which all variables are 

allowed to vary). Partial derivatives are used in vector calculus and differential geometry 

 Since in general a partial derivative is a function of the same arguments as was the original function, this 

functional dependence is sometimes explicitly included in the notation, as in the partial-derivative symbol is ∂. 

One of the first known uses of the symbol in mathematics is by Marquis de Condorcet from 1770, who used it 

for partial differences. The modern partial derivative notation is by Adrien-Marie Legendre (1786), though he 

later abandoned it; Carl Gustav Jacob Jacobi re-introduced the symbol in 1841   

 

II PARTIAL DERIVATIVES  

Definition: Let  be a function of two variables, and let  be in the domain of . The partial derivative 

of  with respect to at  is defined by 

  

provided that this limit exists. The partial derivative of  with respect to at  is defined by  

                     

provided that this limit exists. 

 

Key Words: Partial Derivate, Gradient, Tangent Approximations, Higher Order Derivates, Chain 

Rules 

Note: If , then we can write    and . 

Example 1: Let .  

Find  and    and evaluate and at  
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Solution: By holding  constant and differentiating f  with respect of , we find that  

 so that . By holding  constant and differentiating  

with respect to  we find that     so that         

 18 . 

Remark:  is slope or rate of change in direction at  is the slope of 

the surface in the  direction at . 

Example-2:  Let . 

(a) Find the slope of the surface  in the x – direction at the point  

(b) Find the slope of the surface  in the y – direction at the point  

Solution: (a) Differentiating  with respect to with  held fixed yields . 

Thus, the slope in the x – direction is  that is, Z is decreasing at the rate of 4 units per unit 

increase in . 

(b) Differentiating  with respect to  with  held fixed yields  

Thus, the slope in the direction is  that is,  is increasing at the rate of  units per unit 

increase in y. 

 

2.1 A Geometric Interpretation of Partial Derivatives 
 

When we hold  equal to a constant becomes the function           of 

, whose graph is the intersection of the surface  with the vertical plane  (Figure 4). 

The derivative  is the slope in the positive direction of the tangent line to this curve at 

 

Similarly, when we hold  equal to a constant   becomes the function  

 of , whose graph is the intersection of the surface with the plane  (Figure 5), and the 

derivative  is the slope in the positive direction of the tangent line to this curve at   

 

Higher Derivatives 

If  is a function of two variables, then its partial derivatives  are also functions of two variables, so 

we can consider their partial derivatives and  which are called the second partial 

derivatives of .  
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If  we use the following notation: 

1.    

2.  

3.  

4.  

Thus the notation   means that we first differentiate with respect to  and then with respect to , 

whereas in computing   there order is reversed.  

Example-3: Find the second partial derivatives of . 

Solution: The first partials are given by 

  

We obtain the second partials by computing the partial derivatives of the first partials:  

  

                           

                          

                         

Theorem: Suppose  is defined on a disk  that contains the point . If the functions  and  are 

both continuous on , then  

 

Example-4:  Calculate  

Solution:              

 

 

2.2 Differentiability of functions of several variables 

Recall that in the case of a function of a single variable, a function  is differentiable only if it is 

continuous; but that continuity does not guarantee differentiability. Intuitively, continuity of  requires that 

its graph be a continuous curve; and differentiability requires also that there is always a unique tangent vector to 

the graph of  In other words, a function  is differentiable if and only if its graph is a smooth 
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continuous curve with no sharp corners (a sharp corner would be a place where there would be two possible 

tangent vectors). 

If we try to extend this graphical picture of differentiability to functions of two or more variables, it would be 

natural to think of a differentiable function of several variables as one whose graph is a smooth continuous 

surface, with no sharp peaks or folds. Because for such a surface it would always be possible to associate a 

unique tangent plane at a given point. 

However, “differentiability” in this sense turns out to be a much stronger condition than the mere existence of 

partial derivatives. For the existence of partial derivatives at a point  requires only a smooth approach to the 

point  along the direction of the coordinate axes. We have seen examples of functions that are 

discontinuous even though 

                    both exist. 

For example, the function  has this property, and in fact both  and  exist and are 

continuous functions at the point . 

With this sort of phenomenon in mind we give the following definition of differentiability. 

 

Definition: We say that a function  of two variables x and y is differentiable at  if 

1.   Both  and  exist at the point    

2.    

Remark: The limit condition simply means that 

 

is a good approximation to  near the point  . 

 

The chain Rule 

Recall that the chain rule for functions of a single variable gives the rule for differentiating a composite 

function: If  where  are differentiable functions, then y is indirectly a 

differentiable function of t and   

Theorem (The chain rule: case -1) 

Suppose that  is a differentiable function of  are 

both differentiable functions of t. Then z is a differentiable function of t and  

   



 

 
 

288 | P a g e  
 

Proof: A change of produces changes of . Thus, in turn, 

produce a change of  and we have     

where . [If the functions  are not defined at  

we can define them to be 0 there.] Dividing both sides of this equation by  we have  

                       

If we not let  then  because  is differentiable and therefore 

continuous. 

Similarly, . This, in turn, means that  so  

                 

                      

                      

                      

Since we often write  in place of  , we can rewrite the chain rule in the form: 

                      

Example-1: If . 

Solution: The chain rule gives 

                      =  

Observe that when  we have . 

Therefore
0tdt

dz
. 

Example-2: The pressure P (in kilopascal), volume V (in liter), and temperature T (in Kelvin) of a mole of an 

ideal gas are related by the equation PV = 8.31 T. Find the rate at which the pressure is changing when the 

temperature is 300k and increasing at a rate of 0.1  and the volume is 100 L and increasing at a rate of 0.2 

. 

Solution: If t represents the time elapsed in seconds, then at given instant we have 

 . Since  the chain rule gives 
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The pressure is decreasing at a rate of about . 

We now consider the situation where  but each of  is a function of two variables 

. Then Z is indirectly a function of  and we wish to find 

. 

Theorem: (The chain rule: case-2)  

Suppose that  is a differentiable function of , where and 

. Then z is indirectly a function of . Then  

  

 

            

 

 

 

Example-3: If z . 

Solution: Applying case 2 of the chain rule, we get  

 

                            

 

   

Example-4: Write out the chain rule for the case where and     

  . 

Solution: Using the tree diagram given below, we can write the required expressions. 
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Example-5: If  find the 

value of    when . 

Solution:  

 

 

 

We the help of the tree diagram given above, we have 

 

                   

When ,  and  we have   

So  . 

Example-6: If  has continuous second–order partial derivatives and 

 and  find  

(a)  and  
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Solution: 

(a) The Chain Rule gives 

 

(b) Applying the product rule to the expression in part (a), we get  

  

                            

But, using the chain rule again, we have 

 

 

 

 

      

           

Putting these expressions into equation  and using the equality of the mixed second order 

derivatives, we obtain 

 

         

 

 Implicit Differentiation: If F is differentiable, we can apply case 1 of the chain rule to 

differentiate both sides of the equation  with respect to x given that . 

Since both  are functions of  we obtain. 

. 

But  we solve for  and obtain  
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Example 7 Find . 

Solution: The given equation can be written as 

  

So the above formula gives 

 

Now we suppose that z is given implicitly as a function  by an equation of the 

form . IF F and  are differentiable, then we can use the chain rule to 

differentiate the equation  as follows: 

 

But  so this equation becomes 

 

If  we solve for  and obtain the first formula of the formulas given below. The 

formula for  is obtained in a similar manner. 

  ,  

 

Example-8: Find . 

Solution: Let . Then , from the above formulas, we 

have 

 ,     

 

Application of Partial Derivatives: 

 Directional Derivatives and Gradient of functions of several variables 

 Directional Derivative: 
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Definition: Let  be a function defined on a set containing a disk centered at  and 

let  be a unit vector. Then the directional derivative of  at  in the 

direction of , denoted  is defined by 

   

provided the limit exists. 

Theorem: Let  be differentiable at . Then  has a directional derivative at 

 in every direction. 

Moreover, if  is a unit vector, then 

 

Proof: Let   

Then  . 

So that  exists if and only if  exists. If we let  

          , then  

         . 

With  replacing and  replacing to, the hypothesis of chain rule  exists, and  

  

                                                            . 

Example -1: Let  and let . 

Find . 

Solution: Notice that  is a unit vector. First we calculate the partial derivatives of : 

 . 

Therefore   

Remark: The directional derivative in the direction of an arbitrary non-zero vector  is 

defined to be  where . 

Example-2: Let and let . Find the directional derivative at  

in the direction of . 
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Solution: In this case , so we will find  where 

. Since  and  

Thus 

       =   . 

Let  to be a unit vector in space. The directional derivative 

 is defined by 

                         

provided that the limit exists. 

                     

 The Gradient 

Definitions:  

a) Let  be a function of two variables that has partial derivatives at . Then the 

gradient of  at  denoted grad  is defined by  

 

b) Let   be a function of three variables that has partial derivatives at  . Then the 

gradient of    at   which is denoted  is 

defined by   

  

           

Example -3: Find the gradient of the function  at the point . 

Solution: We first compute the partial derivatives at  

. 

 Hence  

Therefore, . 

 

 

Example-4: If  

Notes:    u 
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 (a)  Find the gradient of  and  

(b)  Find the directional derivative of  at  in the direction of . 

Solution: 

(a) The gradient of  is  

  

(b) The unit vector in the direction of  is  

Therefore, 

             

                               
2

3


 

 

Theorem: Suppose  is differentiable function of two or three variables. The maximum value 

of the directional derivative   is  and it occurs when u has the same direction 

as the gradient vector . 

Proof: We know that  

Thus,  where  is the angle between . 

The maximum value of  and this occurs when . Therefore the maximum 

value of  is  and it occurs when  that is, when u has the same direction . 

Example-5: 

(a) If  find the rate of change of  at the point  in the 

direction from P to Q . 

(b) In what direction does  have the maximum rate of change? What is this 

maximum rate of change? 

Solution: 

(a) We first compute the gradient vector:  

   

   The unit vector in the direction of  is a  so the rate of change 
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    of  in the direction from P to Q is  

   1  

(b) By the above Theorem f increases fastest in the direction of the gradient vector 

. The maximum rate of change is . 

 

Tangent planes 

Suppose a surface S has equation  has continuous first partial 

derivatives, and let  be a point on S. Let  be the curves obtained by 

intersecting the vertical planes  with the surface S. Then the point P lies 

on both . Let  be the tangent lines to the curves  at the point P. 

Then the tangent plane to the surface S at the point P is defined to be the plane that contains 

both tangent lines .  

 

 

 

 

 

 

 

The tangent plane contains lines  

If C is any other curve that lies on the surface S and passes through P, then its tangent line at 

P also lies in the tangent plane. The tangent plane at P is the plane that most closely 

approximates surface S near the point P. 

Any plane passing through the point  has an equation of the form. 

                           

By dividing this equation by C and letting  and  we can write it in the form  
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 represents the tangent plane at P, then its intersection with the plane  must be the 

tangent line . Setting  in  gives 

                 

and we recognize these as the equations (in point – slope form) of a line with slope a. 

But the slope of the tangent is . Therefore . 

Similarly, putting  in , we get  which must represent the 

tangent line , so . 

Definition: Suppose  has continuous partial derivatives. An equation of the tangent  

plane to the surface  at the point  is 

                   

Example-1: Find the tangent plane to the elliptic paraboloid  at the point 

. 

Solution:  Let . Then    

 

Then (by definition) the equation of the tangent plane at  is 

 . 

Tangent plane approximations and Differentials 

Tangent plane approximations 

In example 1 the tangent line  is a good approximation to  

when  is near . 

The function L is called the linearization of  at  and the approximation 

                        

is called the linear approximation or tangent plane approximation of  at . 

Definition: An equation of the tangent plane to the graph of a function   of two variables at 

the point  is    

is called the linearization of  at  and the approximation 
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is called the linear approximation or the tangent plane approximation of  at . 

Theorem: If the partial derivatives  exist near   and are continuous at   

then  is differentiable at  . 

Example 2: Show that  is differentiable at  and find its linearization 

there. Then use it to approximate . 

Solution: The partial derivatives are  

     . 

Both  are continuous functions, so  is differentiable by the above theorem. The 

linearization is L  

The corresponding linear approximation is  

So  

Compare this with the actual value of . 

 

Differentials  

If  is a function of two variables, we can replace  by any point  in the domain 

of  at which  is differentiable and the linear approximation is transformed into  

                 

The number  on the right side of  is usually called the differential 

(or total differential) of  (at   with increments ) and is denoted . Thus 

 . Of course,  depends on  even though 

they are not indicated in the notation  . 

If  then the differential  is denoted by  and the 

differential  is denoted by  Since  

 

We have   

Therefore we can write  as  
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Example -3: Let . Find . 

Solution: Since     

Thus   

Note: If  is a function of three variables that is differentiable at  then the 

differential  is defined by  

The more usual form for  is  

      

      

. 

Image Resizing 

Partial derivatives are key to target-aware image resizing algorithms. Widely known as seam carving, these 

algorithms require each pixel in an image to be assigned a numerical 'energy' to describe their dissimilarity 

against orthogonal adjacent pixels. The algorithm then progressively removes rows or columns with the lowest 

energy. The formula established to determine a pixel's energy (magnitude of gradient at a pixel) depends heavily 

on the constructs of partial derivatives. 

 

Economics 

Partial derivatives play a prominent role in economics, in which most functions describing economic behavior 

posit that the behavior depends on more than one variable. For example a societal consumption function may 

describe the amount spent on consumer goods as depending on both income and wealth; the marginal propensity 

to consume is then the partial derivative of the consumption function with respect to income. 

 

CONCLUSION 

By the definition of partial derivates we are finding first order and second order up to higher order derivates and 

their functions of differentials and gradient of a function and their function of chain rules applying on the 

functions. Finding function of tangent approximations  and their function is continuous and differentiable and 

mainly partial derivates are applying in economics and their function behavior. 
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